Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Với n = 1.
\(VT=B_n=1;VP=\dfrac{1\left(1+1\right)\left(1+2\right)}{6}=1\).
Vậy với n = 1 điều cần chứng minh đúng.
Giả sử nó đúng với n = k.
Nghĩa là: \(B_k=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(B_{k+1}=\dfrac{\left(k+1\right)\left(k+1+1\right)\left(k+1+2\right)}{6}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Thật vậy:
\(B_{k+1}=B_k+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Vậy điều cần chứng minh đúng với mọi n.
c)
Với \(n=1\)
\(VT=S_n=sinx\); \(VP=\dfrac{sin\dfrac{x}{2}sin\dfrac{2}{2}x}{sin\dfrac{x}{2}}=sinx\)
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\).
Ta cần chứng minh nó đúng với \(n=k+1\):
Nghĩa là: \(S_{k+1}=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}\).
Thật vậy từ giả thiết quy nạp ta có:
\(S_{k+1}-S_k\)\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}-\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.\left[sin\dfrac{\left(k+2\right)x}{2}-sin\dfrac{kx}{2}\right]\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.2cos\dfrac{\left(k+1\right)x}{2}sim\dfrac{x}{2}\)\(=2sin\dfrac{\left(k+1\right)x}{2}cos\dfrac{\left(k+1\right)x}{2}=2sin\left(k+1\right)x\).
Vì vậy \(S_{k+1}=S_k+sin\left(k+1\right)x\).
Vậy điều cần chứng minh đúng với mọi n.
Đặt vế trái bằng \(S_n\).
Với n = 1. Vế trái chỉ có một số hạng bằng 2, vế phải bằng \(\dfrac{1.\left(3.1+1\right)}{2}=2\).
Vậy \(VP=VT\). Điều cần chứng minh đúng với n = 1.
Giả sử có \(S_k=\dfrac{k\left(3k+1\right)}{2}\). Ta phải chứng minh:
\(S_{k+1}=\dfrac{\left(k+1\right)\left[3\left(k+1\right)+1\right]}{2}=\dfrac{\left(k+1\right)\left(3k+4\right)}{2}\).
Thật vậy ta có:
\(S_{k+1}=S_k+\left[3\left(k+1\right)-1\right]\)\(=\dfrac{k\left(3k+1\right)}{2}+\left[3\left(k+1\right)-1\right]\)
\(=\dfrac{k\left(3k+1\right)}{2}+\dfrac{2\left(3k+2\right)}{2}\)\(=\dfrac{3k^2+7k+4}{2}=\dfrac{\left(k+1\right)\left(3k+4\right)}{ }\).
Vậy \(S_n=\dfrac{n\left(3n+1\right)}{2}\).
b) Đặt vế trái bằng \(S_n\).
Với n = 1.
VT = 3; VP \(=\dfrac{1}{2}\left(3^2-3\right)=3\).
Điều cần chứng minh đúng với n = 1.
Giả sử \(S_k=\dfrac{1}{2}\left(3^{k+1}-3\right)\).
Ta cần chứng minh: \(S_{k+1}=\dfrac{1}{2}\left(3^{k+1+1}-3\right)=\dfrac{1}{2}\left(3^{k+2}-3\right)\).
Thật vậy:
\(S_{k+1}=S_k+3^{k+1}=\dfrac{1}{2}\left(3^{k+1}-3\right)+3^{k+1}\)
\(=\dfrac{1}{2}\left(3^{k+1}-3+2.3^{k+1}\right)=\dfrac{1}{2}\left(3.3^{k+1}-3\right)\)\(=\dfrac{1}{2}\left(3^{k+2}-3\right)\).
Vậy \(S_n=\dfrac{1}{2}\left(3^{n+1}-3\right)\).
a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng = 2
Vậy hệ thức đúng với n = 1.
Đặt vế trái bằng Sn.
Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là
Sk= 2 + 5 + 8 + …+ 3k – 1 =
Ta phải chứng minh rằng cũng đúng với n = k + 1, nghĩa là phải chứng minh
Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =
Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = + 3k + 2
= (điều phải chứng minh)
Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*
b) Với n = 1, vế trái bằng , vế phải bằng , do đó hệ thức đúng.
Đặt vế trái bằng Sn.
Giả sử hệ thức đúng với n = k ≥ 1, tức là
Ta phải chứng minh .
Thật vậy, từ giả thiết quy nạp, ta có:
= (điều phải chứng minh)
Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*
c) Với n = 1, vế trái bằng 1, vế phải bằng = 1 nên hệ thức đúng với n = 1.
Đặt vế trái bằng Sn.
Giả sử hệ thức c) đúng với n = k ≥ 1, tức là
Sk = 12 + 22 + 32 + …+ k2 =
Ta phải chứng minh
Thật vậy, từ giả thiết quy nạp ta có:
Sk+1 = Sk + (k + 1)2 = = (k + 1). = (k + 1)
(đpcm)
Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*
\(lim\dfrac{\left(n+2\right)^{50}\left(n-3\right)^{80}}{\left(2n-1\right)^{40}\left(3n-2\right)^{45}}=lim\dfrac{\left(1+\dfrac{2}{n^{50}}\right)\left(1-\dfrac{3}{n^{35}}\right)\left(n-3\right)^{45}}{\left(2-\dfrac{1}{n^{50}}\right)\left(3-\dfrac{2}{n^{45}}\right)}=+\infty\)
\(lim\dfrac{4^n}{2.3^n+4^n}=lim\dfrac{1}{2.\left(\dfrac{3}{4}\right)^n+1}=\dfrac{1}{0+1}=1\)
\(lim\dfrac{3^n-2.5^n}{7+3.5^n}=lim\dfrac{\left(\dfrac{3}{5}\right)^n-2}{\dfrac{7}{5^n}+3}=\dfrac{0-2}{0+3}=\dfrac{-2}{3}\)
\(lim\dfrac{4^n-5^n}{2^{2n}+3.5^{2n}}=lim\dfrac{\left(\dfrac{4}{25}\right)^n-\left(\dfrac{1}{5}\right)^n}{\left(\dfrac{2}{5}\right)^{2n}+3}=\dfrac{0-0}{0+3}=0\)
\(lim\dfrac{\left(-3\right)^n+5^n}{2.\left(-4\right)^n+5^n}=lim\dfrac{\left(\dfrac{-3}{5}\right)^n+1}{2.\left(-\dfrac{4}{5}\right)^n+1}=\dfrac{0+1}{0+1}=1\)
1.
Nhớ rằng \(\lim _{x\to \infty}\frac{1}{x}=0\) và \(\lim _{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}\) với \(g(x)\neq 0; \lim_{x\to a}g(x)\neq 0\)
Do đó:
\(\lim_{n\to \infty}\frac{(n+2)^{50}.(n-3)^{80}}{(2n-1)^{40}.(3n-2)^{45}}=\lim_{n\to \infty}\frac{n^{130}(\frac{n+2}{n})^{50}.(\frac{n-3}{n})^{80}}{n^{85}(\frac{2n-1}{n})^{40}.(\frac{3n-2}{n})^{45}}\)
\(=\lim_{n\to \infty}\frac{n^{45}(1+\frac{2}{n})^{50}(1-\frac{3}{n})^{80}}{(2-\frac{1}{n})^{40}.(3-\frac{2}{n})^{45}}\)
\(=\frac{\lim_{n\to \infty}[n^{45}(1+\frac{2}{n})^{50}(1-\frac{3}{n})^{80}]}{\lim_{n\to \infty}[(2-\frac{1}{n})^{40}.(3-\frac{2}{n})^{45}]}\)
\(=\frac{\lim_{n\to \infty}n^{45}.1^{50}.1^{80}}{2^{40}.3^{45}}=\frac{\infty}{2^{40}.3^{45}}=\infty\)
a) Xét hiệu un+1 - un = - 2 - ( - 2) = - .
Vì < nên un+1 - un = - < 0 với mọi n ε N* .
Vậy dãy số đã cho là dãy số giảm.
b) Xét hiệu un+1 - un =
=
Vậy un+1 > un với mọi n ε N* hay dãy số đã cho là dãy số tăng.
c) Các số hạng ban đầu vì có thừa số (-1)n, nên dãy số dãy số không tăng và cũng không giảm.
d) Làm tương tự như câu a) và b) hoặc lập tỉ số (vì un > 0 với mọi n ε N* ) rồi so sánh với 1.
Ta có với mọi n ε N*
Vậy dãy số đã cho là dãy số giảm
a) Với mọi ∀n ε N*, ta có ( . 2n+1) : ( . 2n) = 2.
Suy ra un+1 = un.2, với n ε N*
Vậy dãy số đã chp là một câp số nhân với u1 = , q = 2.
b) Với mọi ∀n ε N*, ta có un+1 = =un.
Vậy dãy số đã cho là một cấp số nhân với u1 = , q =
c) Với mọi ∀n ε N*, ta có un+1 = .