Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}\cdot\frac{\sqrt{a}-1-a+\sqrt{a}}{\sqrt{a}-1}\)
\(=\frac{a+2\sqrt{a}+1}{\sqrt{a}+1}\cdot\frac{-a+2\sqrt{a}-1}{\sqrt{a}-1}\)
\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}\cdot\frac{-\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)
\(=-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)\)
\(=-\left(a-1\right)\)
\(=1-a\)
b) \(P=\sqrt{x^2+6x+2011}\)
\(P=\sqrt{x^2+6x+9+2002}\)
\(P=\sqrt{\left(x+3\right)^2+2002}\ge\sqrt{2002}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-3\)
Mới đc câu a ak, thog cảm nha, trih độ mih thấp lắm:
\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}\)
=\(\frac{a+\sqrt{ab}-\sqrt{ab}+b}{a-b}-\frac{2b}{a-b}\)
=\(\frac{a+b-2b}{a-b}=\frac{a-b}{a-b}=1\)
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
\(A=\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\)\(\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\)
\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\)\(\left(\frac{-\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)\)
\(=\left(\sqrt{a}+1\right)\left(-\sqrt{a}-1\right)\)
\(=-\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)=-\left(\sqrt{a}+1\right)^2\)
\(b,A=-a^2\Rightarrow-\left(\sqrt{a}+1\right)^2=a^2\)
\(\Leftrightarrow a=\sqrt{a}+1\Rightarrow a-\sqrt{a}-1=0\)
\(\Rightarrow4a-4\sqrt{a}-4=0\)
\(\Rightarrow4a-4\sqrt{a}+1-5=0\)
\(\Rightarrow\left(2\sqrt{a}-1\right)^2-\sqrt{5}^2=0\)
\(\Rightarrow\left(2\sqrt{a}-1+\sqrt{5}\right)\left(2\sqrt{a}-1-\sqrt{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2\sqrt{a}=1-\sqrt{5}\\2\sqrt{a}=1+\sqrt{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=\frac{1-\sqrt{5}}{2}\\\sqrt{a}=\frac{1+\sqrt{5}}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{\left(1-\sqrt{5}\right)^2}{4}\left(tm\right)\\a=\frac{\left(1+\sqrt{5}\right)^2}{4}\left(tm\right)\end{cases}}\)
ĐK: \(a,b\ge0,a\ne b\)
\(A=\left(\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\sqrt{a}+\sqrt{b}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(A=\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(A=\left(\sqrt{a}+\sqrt{b}\right).\frac{1}{\sqrt{a}+\sqrt{b}}=1=VP\)
Vậy đẳng thức được cm.
\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)
Biến đổi vế trái ta có:
\(=\left[\frac{1-\sqrt{a^3}}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)
\(=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{1}{1+\sqrt{a}}\right]^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(\frac{1}{a+2\sqrt{a}+1}\right)\)
\(=\frac{\left(a+2\sqrt{a}+1\right)}{a+2\sqrt{a}+1}\)
\(=1=VP\)
Vậy đẳng thức được chứng minh