Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!
a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
<=> \(A^3=4+3\sqrt[3]{4-5}.A\)
<=> \(A^3=4-3A\)
<=> \(A^3+3A-4=0\)
<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)
Có: \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
=> \(A-1=0\)
<=> \(A=1\)
=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
VẬY TA CÓ ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{1+2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{1-2\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}=1+\sqrt{5}-\left(1-\sqrt{5}\right)=1+\sqrt{5}-1+\sqrt{5}=2\sqrt{5}\)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
b) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
c) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
- \(\sqrt{\sqrt{5}^2-2.2\sqrt{5}+4}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(dpcm\right)\)
- \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\sqrt{7}^2+2.4\sqrt{7}+16}-\sqrt{7}\)\(=\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}=\sqrt{7}+4-\sqrt{7}=4\left(DPCM\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1a.\left(\sqrt{72}-3\sqrt{5}+2\sqrt{8}\right).\sqrt{2}+\sqrt{90}=\sqrt{144}-3\sqrt{10}+2.\sqrt{16}+3\sqrt{10}=12+8=20\) \(b.\left(\sqrt{\dfrac{1}{5}}-10\sqrt{\dfrac{27}{5}}+2\sqrt{5}\right):\sqrt{5}+6\sqrt{3}=\left(\sqrt{\dfrac{1}{5}}-30\sqrt{\dfrac{3}{5}}+2\sqrt{5}\right).\dfrac{1}{\sqrt{5}}+6\sqrt{3}=\dfrac{1}{5}-6\sqrt{3}+2+6\sqrt{3}=\dfrac{11}{5}\) \(2.\sqrt{\left(3-\sqrt{10}\right)^2}=\sqrt{10}-3\)
\(b.\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{4+2.2\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}=2+\sqrt{3}+2-\sqrt{3}=4\) \(c.\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}=\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
c. Ta có: C+E=\(\sqrt{45+\sqrt{2009}}+\sqrt{45-\sqrt{2009}}=\sqrt{\left(\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{41}{2}}\right)^2}+\sqrt{\left(\sqrt{\dfrac{49}{2}}-\sqrt{\dfrac{41}{2}}\right)^2}=\dfrac{7}{\sqrt{2}}+\dfrac{\sqrt{41}}{\sqrt{2}}+\dfrac{7}{\sqrt{2}}-\dfrac{\sqrt{41}}{\sqrt{2}}=\dfrac{2.7}{\sqrt{2}}=7\sqrt{2}\)
=> đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)
Vậy đẳng thức trên được chứng minh
b)Biến đổi vế trái ta được
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\sqrt{\frac{1}{6x}}\)
\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x\cdot\frac{1}{6x}}\)
\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)
Vậy đẳng thức trên được chứng minh
Ta có: VT = \(\sqrt{7-2\sqrt{10}}\) = \(\sqrt{5-2\sqrt{10}+2}\) = \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
= \(\sqrt{5}\) - \(\sqrt{2}\) (vì \(\sqrt{5}\) > \(\sqrt{2}\)) = VP
Vậy \(\sqrt{7-2\sqrt{10}}\) = \(\sqrt{5}\) - \(\sqrt{2}\)