Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=-\left(b^2-2bc+c^2-a^2\right)\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=-\left[\left(b^2-2bc+c^2\right)-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)
\(=-\left[\left(b-c\right)^2-a^2\right]\left(b+c-a\right)\left(b+c+a\right)\)
\(=-\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)
a) Ta có: \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)=\left(a-b\right)^2.\left(a+b\right)^2\)( đpcm )
b) Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=\left(a-b+b-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-b+b-c\right)+\left(c-a\right)^3\)
\(-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=\left(a-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=\left(a-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(=\left(a-c\right)^3-\left(a-c\right)^3+3\left(a-b\right)\left(b-c\right)\left(c-a\right)-3\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)( đpcm )
1) Ta có: \(\left(a^2+b^2\right)^2-4a^2b^2\)
\(=a^4+2a^2b^2+b^4-4a^2b^2\)
\(=a^4-2a^2b^2+b^4\)
\(=\left(a^2-b^2\right)^2\)
\(=\left[\left(a-b\right)\left(a+b\right)\right]^2\)
\(=\left(a-b\right)^2\left(a+b\right)^2\)
2) Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=\left(a-b+b-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2\right]+\left(c-a\right)^3\)
\(=\left(a-c\right)\left(a^2-2ab+b^2-ab+ac+b^2-bc+b^2-2bc+c^2\right)+\left(c-a\right)^3\)
\(=-\left(c-a\right)\left(a^2+3b^2+c^2-3ab+ac-3bc\right)+\left(c-a\right)\left(c^2-2ca+a^2\right)\)
\(=\left(c-a\right)\left(c^2-2ca+a^2-a^2-3b^2-c^2+3ab-ac+3bc\right)\)
\(=\left(c-a\right)\left(3ab+3bc-3b^2-3ac\right)\)
\(=3\left(c-a\right)\left(ab-b^2-ac+bc\right)\)
\(=3\left(c-a\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)
\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
a)\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\left(đccm\right)\)
a) Biến đổi vế trái ta có:
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2\left(a^2+b^2\right)=VP\)
Vậy đẳng thức trên được chứng minh
b) Biến đổi vế trái ta có:
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)
Vậy đẳng thức trên được chứng minh
c)Biến đổi vế trái ta có:
\(\left(x+y\right)^4+x^4+y^4\)
\(=x^4+y^4+4x^3y+6x^2y^2+4xy^3+x^4+y^4\)
\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2=VP\)
Vậy đẳng thức trên được chứng minh
lại đây nào , hằng đẳng thức quen thuộc của chúng ta ơi: \(a^2+b^2+c^2\ge ab+bc+ca\)( cái này dễ chứng minh nha bạn, bạn có thể nhân hai vế với 2 hoặc tra mạng là có ngay nha). và chúng ta sẽ áp dụng công thức này vào biểu thức bên dưới
1 \(a^4+b^4+c^4=\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\) \(\ge a^2b^2+b^2c^2+c^2a^2\ge ab^2c+abc^2+a^2bc\)\(=abc\left(a+b+c\right)\)
từ đẳng thức ta có đpcm
2 \(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\)\(\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4\)\(+a^4b^2c^2\)
\(=a^2b^2c^2\left(b^2+c^2+a^2\right)\)\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)
từ đẳng thức ta có đpcm
trong suốt quá trình giải bài toán mình đều sử dụng công thức bên trên nhé. chúc bạn học tốt. kb và tk mk
a(b+c)2+b(a+c)2+c(a+b)2-4abc=(b+c)(c+a)(a+b)
VT = a(b^2+2bc+c^2) + b(c^2 +2ac + a^2) + c(a^2 + 2ab + b^2) - 4abc
= ab^2 + 2abc + ac^2 + bc^2 + 2abc + ba^2 + ca^2 + 2abc + cb^2 - 4abc
= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 + 2abc
VP = ( a+b)(b+c)(c+a)
= (ab + ac + b^2 + bc )( c+a )
= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 + 2abc
Vậy VP=VT => a(b+c)^2+b(c+a)^2+c(a+b)^2−4abc=(a+b)(b+c)(c+a)
chúc bạn học tốt ạ