\(x^2+x+1\)

b,\(x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

a) \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy đa thức trên vô nghiệm

4 tháng 7 2019

b) \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Vì \(\left(x+1\right)^2\ge0\)nên \(\left(x+1\right)^2+2>0\)

Vậy đa thức trên vô nghiệm

13 tháng 4 2019

a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)

\(\Leftrightarrow x^2+3\ge3\forall x\)

\(\Rightarrow\)Đa thức trên vô nghiệm

1 tháng 7 2019

a, x^2 + 3

có x^2 > 0 => x^2 + 3 > 3

=> đa thứ trên vô nghiệm

b, x^4 + 2x^2 + 1

x^4 > 0 ; 2x^2 >

=> x^4 + 2x^2 >

=> x^4 + 2x^2 + 1 >

vậy _

c, -4 - 3x^2

= -(4 + 3x^2)

3x^2 > 0 => 3x^2 + 4 > 4

=> -(4 + 3x^2) < 4

vậy_

26 tháng 5 2019

Bài 1:

a)Có \(B\left(y\right)=m.\left(-1\right)-3=2\)

\(m.\left(-1\right)\) \(=2+3\)

\(m.\left(-1\right)\) \(=5\)

\(m\) \(=5:\left(-1\right)\)

\(m\) \(=-5\).

b)Có \(-1\) là nghiệm của đa thức D(x).

=>\(D\left(x\right)=\left(-2\right).\left(-1\right)^2+\left(-1\right)a-7a+3=0\)

<=> \(\left(-2\right)-a+7a+3=0\)

<=> \(\left(-2\right)-a+7a=-3\)

<=> \(-a+7a=-2-3\)

<=> \(-a+7a=-5\)

<=> \(\left(-1+7\right)a=-5\)

<=> \(6a=-5\)

<=> a= \(\frac{-5}{6}\)

26 tháng 5 2019

B2;

a)\(x^2+x+1\)

=(\(x^2+0,5x\))+(0,5x+0,25)+0,75

=x(x+0,25)+0,5(x+0,5)+0,75

=\(\left(x+0,5\right)^2\)+0,75.

\(\left(x+0,5\right)^2\ge0\)

=>\(x^2+x+1\) không có nghiệm.

b)\(x^2+2x+2\)

=\(x^2+x+x+1+1\)

=\(\left(x^2+x\right)+\left(x+1\right)+1\)

=\(x\left(x+1\right)+\left(x+1\right)\)

=\(\left(x+1\right)\left(x+1\right)+1\)

=\(\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

=> \(x^2+2x+2\) không có nghiệm.

c)\(-x^2+2x-3\)

=\(-\left(x^2-2x+3\right)\)

=\(-\left(x^2-2.x.1+2+1\right)\)

=\(-\left[\left(x-1\right)^2+2\right]\)

=\(-\left(x-1\right)^2-2\)

\(\left(x-1\right)^2\le0\)

=> \(-x^2+2x-3\) không có nghiệm.

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

1 tháng 5 2017

a/ P(x) = x2 + 3x + 2 - x = x2 + 2x + 2

Q(x) = -2x3 + 2x2 - x - 5 + 2x3 = 2x2 - x - 5

b/ Q(-1) = 2 . (-1)2 - (-1) - 5

= 2 + 1 - 5 = -2

c/ P(x) = x2 + 2x + 2 = x2 + 2x + 1 + 1

= (x + 1)2 + 1. Dễ thấy:

(x + 1)2 \(\ge0\forall x\) => (x + 1)2 + 1 > 0

=> P(x) vô no (đpcm)

1 tháng 5 2017

a)

\(P\left(x\right)=x^2+3x+2-x\)

\(P\left(x\right)=\left(3x-x\right)+x^2+2\)

\(P\left(x\right)=2x+x^2+2\)

\(Q\left(x\right)=-2x^3+2x^2-x-5+2x^3\)

\(Q\left(x\right)=\left(-2x^3+2x^3\right)+2x^2-x-5\)

\(Q\left(x\right)=2x^2-x-5\)

b)

Tại x = -1 thì đa thức Q(x) đạt giá trị là:

\(Q\left(-1\right)=2.\left(1\right)^2-\left(-1\right)-5\)

\(Q\left(-1\right)=2.1+1-5=2+1-5=-2\)

c)

Có: \(P\left(x\right)=2x+x^2+2\)

Hay \(P\left(x\right)=x^2+2x+2\)

\(P\left(x\right)=x^2+x+x+1+1\)

\(P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\)

\(P\left(x\right)=x.\left(x+1\right)+1.\left(x+1\right)+1\)

\(P\left(x\right)=\left(x+1\right).\left(x+1\right)+1\)

\(P\left(x\right)=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy đa thức P(x) không có nghiệm.

Chúc bạn học tốt!ok

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

15 tháng 4 2018

a) \(2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^3-2x=0\)

\(\Leftrightarrow x\left(x^2-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)

c) \(x^6+1=0\)

\(\Leftrightarrow x^6=-1\)

Ta có : \(x^6\ge0\) với mọi x

Mà : -1 < 0

=> Vô nghiệm

d) \(x^3+2x=0\)

\(\Leftrightarrow x\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)

e) \(x^5+8x^2=0\)

\(\Leftrightarrow x^2\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

f) \(x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)

g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)

7 tháng 7 2017

Bài 1:

a) Cho đa thức \(G\left(x\right)=-x-8=0\)

\(\Rightarrow-x=8\)

\(\Rightarrow x=-8\)

Vậy -8 là nghiệm của đa thức G(x).

b)Ta có: \(C\left(-2\right)=m.\left(-2\right)^2+2.\left(-2\right)+16=0\)

\(\Rightarrow C\left(x\right)=4m-4+16=0\)

\(\Rightarrow4m=-12\)

\(\Rightarrow m=-3\)

Bài 2.

a) Cho B(y)=-3y+5=0

\(\Rightarrow y=\dfrac{5}{3}\)

b) M(x)=2x2+1

Ta có: 2x2\(\ge0\)

nên: M(x)=2x2+1 \(\ge1\)

\(\Rightarrow M\left(x\right)\) không có nghiệm.

Các bài sau tương tự, không khó đâu bạn. Chúc bạn học tốt!

8 tháng 7 2017

cảm ơn bạn nha

3 tháng 5 2017

Ôn tập toán 7