Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)
\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)
\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)
câu 2:
a(b-c)-b(a+c)+c(a-b)=-2bc
ta có:
a( b-c ) - b ( a +c )+ c(a-b)
=ab-ac-(ba+bc)+(ca-cb)
=ab-ac-ba-bc+ca-cb
=ab-ba-ac+ca-bc-cb
=0-0-bc-cb
=bc+(-cb)
=-2cb hay -2bc
b)a(1-b)+a(a^2-1)=a(a^2-b)
Ta có:
a(1-b) + a(a^2-1)
=a-ab+(a^3-a)
=a-ab+a^3-a
=a-a-ab+a^3
=0-ab+a^3
=-ab+a^3
=a(-b +a^2) hay a(a^2-b)
mk lm tiếp câu b
BÀI LÀM
b) \(P\left(x\right)=x^5-x\)
\(=x\left(x^4-1\right)\)
\(=x\left(x^2-1\right)\left(x^2+1\right)\)
\(=\left(x-1\right)\left(x+1\right)x\left(x^2+1\right)\)
\(=\left(x-1\right)x\left(x+1\right)\left(x^2-4+5\right)\)
\(=\left(x-1\right)x\left(x+1\right)\left(x^2-4\right)+5\left(x-1\right)x\left(x+1\right)\)
\(=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)
Ta thấy \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)là tích của 5 số nguyên liên tiếp (do x nguyên) nên chia hết cho 5
\(5\left(x-1\right)x\left(x+1\right)\) chia hết cho 5
Vậy \(P\left(x\right)⋮5\)nếu x nguyên
a , \(P\left(x\right)-Q\left(x\right)=x^5-x-\left(x^2-4\right)\left(x^2-1\right)x\)
\(=x^5-x-\left(x^5-5x^3+4x\right)=x^5-x-x^5+5x^3-4x\)
\(=5x^3-5x=5x\left(x^2-1\right)=5x\left(x-1\right)\left(x+1\right)\)
\(A=x^2-4x-x\left(x-4\right)-15\)
\(=x^2-4x-x^2+4x-15=-15\) => đpcm
\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
\(=5x^3-5x^2-5x^3+5x^2-13=-13\) => đpcm
\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
\(=-3x^2+15x+3x^2-12x-3x+7=7\) => đpcm
\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
\(=7x^2-35x+21-7x^2+35x-14=7\) => đpcm
\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
\(=4x^3-20x-4x^3+20x+20=20\) => đpcm
\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) => đpcm
a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)
\(=x^2+10x+25-x^2+10x-25-20x+2\)
\(=2\) không phụ thuộc vào \(x\)
b) \(\left(x+3\right)\left(x-5\right)-\left(x-1\right)^2\)
\(=x^2-2x-15-x^2+2x-1\)
\(=-16\) không phụ thuộc vào \(x\)
c) \(\left(3x+2\right)\left(x-2\right)-x\left(3x-5\right)+8\)
\(=3x^2-4x-4-3x^2+5x+8\)
\(=x+8\) câu này đề sai.
d) \(2.\left(3x+1\right)\left(2x+5\right)-6x.\left(2x+4\right)-10\left(x-1\right)\)
\(=2.\left(6x^2+17x+5\right)-\left(12x^2+24x\right)-10x+10\)
\(=12x^2+34x+10-12x^2-24x-10x+10\)
\(=20\) không phụ thuộc vào \(x\)
a) ( x + 5 )2 - ( x - 5 )2 - 20x + 2
= x2 + 10x + 25 - ( x2 - 10x + 25 ) - 20x + 2
= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2
= 2 ( đpcm )
b) ( x + 3 )( x - 5 ) - ( x - 1 )2
= x2 - 2x - 15 - ( x2 - 2x + 1 )
= x2 - 2x - 15 - x2 + 2x - 1
= -16 ( đpcm )
c) ( 3x + 2 )( x - 2 ) - x( 3x - 5 ) + 8
= 3x2 - 4x - 4 - 3x2 + 5x + 8
= x + 4 ( lỗi đề )
d) 2( 3x + 1 )( 2x + 5 ) - 6x( 2x + 4 ) - 10( x - 1 )
= 2( 6x2 + 17x + 5 ) - 12x2 - 24x - 10x + 10
= 12x2 + 34x + 10 - 12x2 - 24x - 10x + 10
= 20 ( đpcm )
Bài 2:
a: \(\Leftrightarrow x^2+3x-x^2-11=0\)
=>3x-11=0
=>x=11/3
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>8-2x=0
=>x=4
Bài 3:
a: Sửa đề: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y=4xy\)
b: \(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)
\(=\left(9n-9\right)\left(5n+5\right)=9\left(n-1\right)\left(5n+5\right)⋮9\)
a ) \(-x^2+6x-15\)
\(\Leftrightarrow-x^2+6x-9-6\)
\(\Leftrightarrow-\left(x^2-6x+9\right)-6\)
Ta có : \(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2-6\le-6\)
\(\RightarrowĐPCM.\)
b ) \(\left(x-3\right)\left(1-x\right)-2\)
\(\Leftrightarrow\left(x-x^2-3+3x\right)-2\)
\(\Leftrightarrow\left(-x^2+4x-3\right)-2\)
\(\Leftrightarrow-x^2+4x-3-2\)
\(\Leftrightarrow-x^2+4x-4-1\)
\(\Leftrightarrow-\left(x^2-4x+4\right)-1\)
\(\Leftrightarrow-\left(x-2\right)^2-1\)
Ta có : \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\le0\)
\(\Leftrightarrow-\left(x-2\right)^2-1\le-1\)
\(\LeftrightarrowĐPCM.\)
c ) \(\left(x+4\right)\left(2-x\right)-10\)
\(\Leftrightarrow\left(2x-x^2+8-4x\right)-10\)
\(\Leftrightarrow\left(-x^2-2x+8\right)-10\)
\(\Leftrightarrow-x^2-2x+8-10\)
\(\Leftrightarrow-x^2-2x-2\)
\(\Leftrightarrow-x^2-2x-1-1\)
\(\Leftrightarrow-\left(x^2+2x+1\right)-1\)
\(\Leftrightarrow-\left(x+1\right)^2-1\)
Ta có : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow-\left(x+1\right)^2\le0\)
\(\Leftrightarrow-\left(x+1\right)^2-1\le-1\)
\(\LeftrightarrowĐPCM.\)
a) \(-x^2+6x-15=-x^2+6x-9-6=-\left(x-3\right)^2-6\)
Do \(-\left(x-3\right)^2\le0\forall x\in Q\)
\(\Rightarrow......................\le0\forall x\in Q\)
Áp dụng hằng đẳng nhé mk ngại làm lắm