Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)
Vậy đẳng thức trên đc chứng minh
b) Biến đổi vế trái ta có:
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x}\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)
Vậy đẳng thức trên đc chứng minh
a) \(\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}+\sqrt{2}\right)\)
\(=\left(9-5\right).\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{5-2\sqrt{5}+1}.\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\)
\(=4.\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4.\left(5-1\right)=16\)
b) \(2\sqrt{4+\sqrt{6-2\sqrt{5}}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{5-2\sqrt{5}+1}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{3+\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{1}\right)\)
\(=2\sqrt{6+2\sqrt{5}}.\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5+2\sqrt{5}+1}.\left(\sqrt{5}-1\right)\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}.\left(\sqrt{5}-1\right)=2.\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\)
\(=2.\left(5-1\right)=2.4=8\)
\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)
\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)
\(\Leftrightarrow C=-3\)
a) (căn 3-1)^2 = (căn 3)^2 - 2.căn 3.1 + 1^2 (theo hẳng đẳng thức bình phương 1 hiệu)
= 3 - 2.căn 3 +1 = 4 - 2.căn 3
b) Theo câu a ta có 4-2.căn 3 = (căn 3-1)^2
=> căn của 4-2.căn 3 = căn 3-1 (khai phương ra ah)
=> căn của 4-2.căn 3 - căn 3 = căn 3 -1 - căn 3= -1
(sr bạn mk ko bt vt dấu căn nên hơi khó hỉu =.=)