Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)
\(=9\)
Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x
b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
\(a,=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)
\(=\left(64x^3-64x^3\right)+\left(48x^2-48x^2\right)+\left(12x-12x\right)+\left(9-1\right)\)
\(=8\) => ko phụ thuộc vào biến x
\(b,=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
thay x+y=1 vào
\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2x^2-2xy+2y^2-3x^2-3y^2\)
\(=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1\) =>ko phụ thuộc vào biến
\(c,=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-1\right)\)
\(=6x^2+2-6x^2+6=8\)
\(d,\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
e)\(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
=\(\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
=\(\frac{2x^2+50}{x^2+25}\)
=\(\frac{2\left(x^2+25\right)}{x^2+25}\)
\(=2\)
Đúng như đáp án bạn nha
Bài 1.
a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)
\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)
Bài 3.
N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )
= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9( x2 + 4/3x + 4/9 ) + 25
= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x
=> đpcm
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
Với các bài yêu cầu như thế này, em chỉ cần biến đổi, rút gọn biểu thức để giá trị cuối cùng là một hằng số.
a) Câu này có vấn đề.
Cô đặt f(0) = (x-2)2 + 6(x+1)(x-3) - (x-2)(x2 - 2x - 4) = -22
f(1) = -28 \(\ne f\left(0\right)\)
Vậy rõ ràng giá trị biểu thức phụ thuộc biến. Em xem lại đề nhé.
b) \(\frac{a}{\left(a-b\right)\left(a-c\right)}+\frac{b}{\left(b-a\right)\left(b-c\right)}+\frac{c}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-a\left(b-c\right)-b\left(c-a\right)-c\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-ab+ac-bc+ab-ca+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến.
a) ( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )
= 64x3 - 48x2 + 12x - 1 - ( 64x3 + 12x - 48x2 - 9 ) ( chỗ này bạn chịu khó nháp nhé )
= 64x3 - 48x2 + 12x - 1 - 64x3 - 12x + 48x2 + 9
= -1 + 9 = 8
Vậy biểu thức không phụ thuộc vào x ( đpcm )
b) ( x + 1 )3 - ( x - 1 )3 - 6( x + 1 )( x - 1 )
= x3 + 3x2 + 3x + 1 - ( x3 - 3x2 + 3x - 1 ) - 6x2 + 6
= x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 + 6
= 1 + 1 + 6 = 8
Vậy biểu thức không phụ thuộc vào x ( đpcm )
c) \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}\)
\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
Vậy biểu thức không phụ thuộc vào x ( đpcm )
a, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)
\(=8\)
Vậy biểu thức thức không phụ thuộc vào biến x
b, \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)
\(=8\)
Vậy biểu thức không phụ thuộc vào biến x
c, \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
Vậy biểu thức không phụ thuộc vào biến x