\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

Nguyễn Việt Lâm giúp mk vs. thanks bnn!!!!!

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

13 tháng 8 2019

Đặt P = ... 

* Chứng minh P > 1/2 : 

\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)

Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là: 

\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)

\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)

Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)

\(\Rightarrow\)\(P>\frac{1}{2}\)

* Chứng minh P < 3/4 : 

Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)

\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)

\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)

... 

\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)

\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 ) 

\(\Rightarrow\)\(P< \frac{3}{4}\)

14 tháng 8 2019

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Leftrightarrow17\cdot\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Leftrightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)

Tương tự ta có :

\(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c}\)

\(\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)

Cộng theo vế của 3 bđt ta được :

\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(\Leftrightarrow\sqrt{17}\cdot A\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

Áp dụng bất đẳng thức Cô-si :

\(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)

\(\ge2\sqrt{\frac{4\cdot16a}{a}}+2\sqrt{\frac{4\cdot16b}{b}}+2\sqrt{\frac{4\cdot16c}{c}}-15\left(a+b+c\right)\)

\(\ge16+16+16-15\cdot\frac{3}{2}=\frac{51}{2}\)

Do đó : \(\sqrt{17}\cdot A\ge\frac{51}{2}\)

\(\Leftrightarrow A\ge\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

9 tháng 9 2019

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NV
9 tháng 11 2019

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(< \sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow N< 2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)

\(N< 2\left(1-\frac{1}{\sqrt{2012}}\right)< 2.1=2\)

19 tháng 4 2020

\(VT=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(c+a\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(b+c\right)\left(c+a\right)}}\)

\(=\sqrt{\frac{a}{a+b}.\frac{a}{c+a}}+\sqrt{\frac{b}{a+b}.\frac{b}{b+c}}+\sqrt{\frac{c}{b+c}.\frac{c}{c+a}}\)

\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{c+a}\right)\)

\(=\frac{1}{2}.3=\frac{3}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

NV
2 tháng 4 2019

\(\frac{1}{2}+\frac{1}{2}cosx=\frac{1}{2}\left(1+cosx\right)=\frac{1}{2}\left(1+2cos^2\frac{x}{2}-1\right)=cos^2\frac{x}{2}\)

Do \(0< x< \frac{\pi}{2}\Rightarrow cos\frac{x}{k}>0\) \(\forall k\) nguyên dương

\(\Rightarrow A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosx}}}\)

\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)

\(A=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)

\(A=cos\frac{x}{8}\)

\(\Rightarrow\) Với \(n=\pm8\) thì đẳng thức luôn đúng