\(x^2-3x+3\ge2,25\)

d) \(m^2+n^2+5+2m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:
c) Sửa đề: \(x^2-3x+3\geq 0,75\)

Ta có:

\(x^2-3x+3=x^2-2.\frac{3}{2}x+3=x^2-2.\frac{3}{2}x+(\frac{3}{2})^2+0,75\)

\(=(x-\frac{3}{2})^2+0,75\)

\((x-\frac{3}{2})^2\geq 0, \forall x\Rightarrow x^2-3x+3=(x-\frac{3}{2})^2+0,75\geq 0,75\)

Ta có đpcm

d) Không có dấu "=" bạn nhé.

\(m^2+n^2+5+2mn-4m-4n\)

\(=(m^2+2mn+n^2)-4(m+n)+5\)

\(=(m+n)^2-2.2(m+n)+5\)

\(=(m+n)^2-2.2(m+n)+2^2+1\)

\(=(m+n-2)^2+1\)

\((m+n-2)^2\geq 0, \forall m,n\)

\(\Rightarrow m^2+n^2+5+2mn-4m-4n=(m+n-2)^2+1\geq 0+1>0\)

13 tháng 8 2018

\(4x^2+12x+10=\left(4x^2+12x+9\right)+1=\left(2x+3\right)^2+1\ge1\)

\(25x^2+5x+1=\left(25x^2+5x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(5x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

11 tháng 8 2018

Câu a : \(x^2-3x+3=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Xem lại đề câu a .

12 tháng 8 2018

DƯƠNG PHAN KHÁNH DƯƠNG đề đúng nhé bạn

mà bạn giúp mình câu b luôn với ạ huhu TT

6 tháng 2 2020

Nếu không áp dụng BĐT thì chuyển vế cũng được nhưng hơi dài :

Mình thử làm thôi nhé :

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}\)

\(=\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}-\frac{2}{\left(1+ab\right)}\)

\(=\frac{2+a^2+b^2-2\left(1+a^2\right)\left(1+b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)

\(=\frac{2+a^2+b^2-2-2b^2-2a^2-2\left(ab\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)

\(=\frac{-\left(a^2+b^2+2a^2b^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\)

....

23 tháng 3 2020

Giải bất mà không được dùng bất ? Vô lý thế ??

Bài Đạt chưa làm hết,mình làm nốt nha !

15 tháng 10 2020

a , \(-q^3+12q^2x-48qx^2+64x^3\)

 \(=-\left(q^3-12q^2x+48qx^2-64x^3\right)\)

\(=\)\(-\left(q-4x\right)^3\)

b , x+ 2xy - y- 9 

= - ( x2 - 2xy + y2 ) - 9

= - ( x - y )2 - 9

= ( - x + y - 3 ) ( x - y + 3 )

3 , 1 - m2 + 2mn - n2

= 1 - ( m2 - 2mn + n2 )

= 1 - ( m - n )2

= ( 1 - m + n ) ( 1 + m - n )

4 , x3 - 8 + 6a2 - 12a

  = x3 +  6a2 - 12a + 8 

  = x3 + 6a- 12a + 4 + 4

  = x3 + ( 6a2 - 12a + 4 ) + 4

  = x3 + ( 3a - 2 )2 + 4

  = ( x + 3a - 2 + 2 ) ( x2 + 3a + 2 + 2 )

( Mai làm tiếp mấy ý sau '-' muộn rồi ~ )

16 tháng 10 2020

5 , x2 - 2xy + y2 - xz - yz

  = ( x2 - 2xy + y2 ) - ( xz + yz )

  = (  x - y )2 - z ( x + y )

  = ( x - y ) 2 - z ( x - y )

  = ( x - y ) ( x - y - z )

6 , x2 - 4xy + 4y - z2 + 4z - 4t2

 =(  x2 - 4xy + 4y ) - (z- 4z +4 ) . t2

 = ( x - y )2 - ( z - 2  )2 . t2

 = ( x - y - z - 2 ) ( x - y + z - 2 ) t2

7 , 25 - 4x2 - 4xy - y2

  = 25 + ( - 4x2 - 4xy + y2 )

  = 25 + ( 2x - y )2

  = ( 5 + 2x - y ) ( 5 + 2x + y )

8 ,

       x3 + y3 + z3 - 3xyz

    = (x+y)3 - 3xy (x  - y ) + z3 - 3xyz 
    = [ ( x + y)3 + z] - 3xy ( x + y + z ) 
    = ( x + y + z )3 - 3z ( x + y )( x + y + z ) - 3xy ( x - y - z ) 
    = ( x + y + z )[( x + y + z )2 - 3z ( x + y ) - 3xy ] 
    = ( x + y + z )( x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
    = ( x + y + z)(x2 + y2 + z2 - xy - xz - yz)

30 tháng 3 2018

c)          \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)

\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)

\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)

3 tháng 4 2018

a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra

b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra

d) dung bdt a^3+b^3>=a^2b+ab^2

24 tháng 7 2018

Bài 1

a) \(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\left(Đpcm\right)\)

b) \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)

\(=x^3-y^3\left(Đpcm\right)\)

Bài 2

a) \(16x^2-24xy+9y^2\)

\(=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2\)

\(=\left(4x-3y\right)^2\)

b) \(\left(x-2\right)^2-y^2\)

\(=\left(x-2-y\right)\left(x-2+y\right)\)

Bài 3

a) \(\left(x+2\right)\left(x^2-2x+4\right)+x\left(x-5\right)\left(x+5\right)=-17\)

\(\Rightarrow x^3+2^3+x\left(x^2-5^2\right)=-17\)

\(\Rightarrow x^3+8+x^3-25x=-17\)

\(\Rightarrow2x^3-25x=-17-8=-25\)

Hình như câu này đề sai rồi đấy bạn bucminh

b) \(25x^2-2=0\)

\(\Rightarrow25x^2=2\)

\(\Rightarrow x^2=\dfrac{2}{25}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{2}{25}}\\x=-\sqrt{\dfrac{2}{25}}\end{matrix}\right.\)

24 tháng 7 2018

1.

\(a.\left(x+y\right).\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)\(b.\left(x-y\right)\left(x^2+xy+y^2\right)=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3\)2.

\(a.16x^2-24xy+9y^2=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2=\left(4x-3y\right)^2\)\(b.\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)

3.

\(b.25x^2-2=0\)

\(\Leftrightarrow25x^2=2\Leftrightarrow x^2=\dfrac{2}{25}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{2}{25}}\\x=-\sqrt{\dfrac{2}{25}}\end{matrix}\right.\)

11 tháng 8 2019

a,    =(x+4)3

b)  = (x-2)3

c)  =\(-\left(x-1\right)^3\)

3 tháng 7 2019

1.a (3x-2y)2= (3x)2 - 2. 3x . 2y - (2y)= 9x2  - 12xy - 4y2

2.b (2x - 1/2)= (2x)2 - 2.2x.1/2 - (1/2)2= 4x2 - 2 - 1/4

3.c (x/2 - y) (x/2+y)= (x/2)2 - (y)2 = x/4 - y

3 tháng 8 2020

Bài 1 :

 \(\left(3x-2y\right)^2=9x^2-12xy+4y^2\)

\(\left(2x-\frac{1}{2}\right)^2=4x^2-4x+\frac{1}{4}\)

\(\left(\frac{x}{2}-y\right)\left(\frac{x}{2}+y\right)=\frac{x^2}{4}-y^2\)

\(\left(x+\frac{1}{3}\right)^3=x^3+x^2+\frac{1}{3}x+\frac{1}{27}\)

\(\left(x-2\right)\left(x^2+2x+2^2\right)=x^3-8\)