\(\dfrac{x-y}{xy} + \dfrac{y-z}{yz} +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

\(=\dfrac{x}{xy}-\dfrac{y}{xy}+\dfrac{y}{yz}-\dfrac{z}{yz}+\dfrac{z}{zx}-\dfrac{x}{zx}\)

\(=\dfrac{1}{y}-\dfrac{1}{x}+\dfrac{1}{z}-\dfrac{1}{y}+\dfrac{1}{x}-\dfrac{1}{z}\)

= 0

=> KO PHỤ THUỘC

9 tháng 1 2019

* Chứng minh biểu thức sau phụ thuộc vào x , y , z

\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)

= \(\dfrac{(x-y)z+(y-z)x+(z-x)y}{xyz} \)

= \(\dfrac{xz-yz+xy-xz+zy-xy}{xyz}\)

= \(\dfrac{0}{xyz}\)

= 0

Vậy \(\dfrac{x-y}{xy} + \dfrac{y-z}{yz} + \dfrac{z-x}{zx} \) phụ thuộc vào x , y ,z

29 tháng 12 2018

Ta có: A= \(\dfrac{xy+2y+1}{xy+x+y+1}+\dfrac{yz+2z+1}{yz+y+z+1}\) +\(\dfrac{zx+2x+1}{zx+z+x+1}\)

=\(\dfrac{xy+2y+1}{\left(x+1\right)\left(y+1\right)}+\dfrac{yz+2z+1}{\left(y+1\right)\left(z+1\right)}\) +\(\dfrac{zx+2x+1}{\left(x+1\right)\left(z+1\right)}\)

=\(\dfrac{\left(xy+2y+1\right)\left(z+1\right)}{\left(z+1\right)\left(y+1\right)\left(x+1\right)}\)+\(\dfrac{\left(yz+2z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)+\(\dfrac{\left(y+1\right)\left(zx+2x+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

Đặt B =(z+1)(xy+2y+1)+(yz+2z+1)(x+1)+(y+1)(zx+2x+1)

=>B= xyz+2yz+z+xy+2y+1+xyz+2zx+x+yz+2z+1+xyz+2xy+y+xz+2x+1 = 3xyz+3yz+3z+3xy+3y+3+3xz+3x = 3(xyz+yz +x+1+xy+y+xz+z) =3[yz(x+1)+(x+1)+y(x+1)+z(x+1)] =3(x+1)(yz+y+z+1)=3(x+1)(y+1)(1+z)

=> A=\(\dfrac{B}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=\(\dfrac{3\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=3

Vậy A=3 với mọi x,y,z

`@ x+y+z=1`.

`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)

`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.

`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`

`=1.`

Vậy `P` không phụ thuộc vào giá trị của biến.

Đặt \(A=\dfrac{2014x}{xy+2014x+2014}+\dfrac{y}{yz+y+2014}+\dfrac{z}{xz+z+1}\)

\(A=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\)

\(A=\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}\)

\(A=\dfrac{xz}{xz+z+1}+\dfrac{1}{xz+z+1}+\dfrac{z}{xz+z+1}\)

\(A=\dfrac{xz+z+1}{xz+z+1}=1\)

\(\Rightarrowđpcm\)

5 tháng 4 2018

Ta có : \(A=\dfrac{2014x}{xy+2014x+2014}+\dfrac{y}{yz+y+2014}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{x.y}{x.yz+xy+xyz.x}+\dfrac{xy.z}{xz.xy+xy.z+xy}\)

\(=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{xy}{xyz+x^2yz+xy}+\dfrac{xyz}{x^2yz+xyz+xy}\)

\(=\dfrac{x^2yz+xyz+xy}{x^2yz+xyz+xy}=1\) (const)

Vậy A không phụ thuộc vào các biến x,y,z

`@ x+y+z=1`.

`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)

`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.

`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`

`=1.`

Vậy `P` không phụ thuộc vào giá trị của biến.

26 tháng 11 2017

Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow\left\{{}\begin{matrix}1+\dfrac{x}{y}+\dfrac{x}{z}=0\left(1\right)\\1+\dfrac{y}{x}+\dfrac{y}{z}=0\left(2\right)\\1+\dfrac{z}{x}+\dfrac{z}{y}=0\left(3\right)\end{matrix}\right.\)

\(\dfrac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left(xy+yz+xz\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=0\)

\(\Rightarrow\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{y}{z}=0\)

\(\Rightarrow A+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{y}{z}=0\)

Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\)suy ra:

\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}=-3\)

\(\Rightarrow A-3=0\Rightarrow A=3\)

3 tháng 5 2017

\(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}=\dfrac{1}{2}\left[\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{xy}{z}+\dfrac{zx}{y}\right)+\left(\dfrac{yz}{x}+\dfrac{zx}{y}\right)\right]\)

\(\ge\dfrac{1}{2}\left(2y+2x+2z\right)=x+y+z=2014\)

Dấu = xảy ra khi \(x=y=z=\dfrac{2014}{3}\)

2 tháng 5 2017