Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(=x^2+2.1,5x+1.5^2+0,75\)
\(=\left(x+1.5\right)^2+0,75\)
Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương
b)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)
Lập luận tương tự câu a), được biểu thức luôn dương
c)
\(=x^2+2xy+y^2+x^2-2x+1+1\)
\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)
Lập luận tương tự
\(A=-x^2+3x-7\)
\(=-\left(x^2-3x+7\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)
\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)
\(-9x^2+12x-15=\left(-11\right)-\left(9x^2-12x+4\right)=\left(-11\right)-\left(3x-2\right)^2\le-11< 0\)
\(-5-\left(x-1\right).\left(x+2\right)=-5-\left(x^2+x-2\right)=-\left(x^2+x+3\right)=-\left(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)
bạn triển khai như sau:
a) P=(x^2-8x+16)+84
=(x-4)^2+84>0
vậy P luôn luôn dương với mọi x.
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
Câu hỏi của ĐỖ THỊ HƯƠNG TRÀ - Toán lớp 8 - Học trực tuyến OLM
mình làm rồi nhé, bạn kham khảo link
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
Bạn xem lại đề nhé sao lại có cả biến y ở biểu thức thế nhỉ?
Nhầm ạ: -2x^2 - 4