Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(P=\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(P=\dfrac{x^3\left(x-1\right)-\left(x-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(P=\dfrac{\left(x^3-1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}\)
Với : x # 1 thì : ( x - 1)2 luôn lớn hơn hoặc bằng 0
x2 + 2 > 0 với mọi x
Suy ra : \(P=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}>0\)( với x # 1)
b) Tương tự
1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= x2y+xy2+y2z+yz2+x2z+xz2+2xyz
=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)
=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)
=(xy+xz+yz+z2).(x+y)
=(x(y+z)+z(y+z)).(x+y)
=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)
2. 3(x-3)(x-7)+(x-4)2+48
=3(x2+4x-21)+x2-8x+16+48
=4x2-4x+1 = (2x-1)2
Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0
3, x2-6x+10
= x2-2.3.x+9+1
=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)2 >=0 với mọi x)
=> x26x+10 >0 với mọi x
4x-x2-5
=-(x2-4x+5)
=- (x2-2.2x+4+1)
= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)
vậy, 4x-x2-5<0 với mọi x
Ta có : x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x - 3)2 + 1
Mà (x - 3)2 \(\ge0\forall x\)
Nên : (x - 3)2 + 1 \(\ge1\forall x\)
=> (x - 3)2 + 1 \(>0\)(đpcm)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có:
\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)
không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .
Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow xy+yz+xz=0\)
Ta có: \(\left(xy+yz+xz\right)\left(x^2y^2+y^2z^2+x^2z^2-x^2yz-xy^2z-xyz^2\right)=0\)
\(\Leftrightarrow\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=3\left(xyz\right)^2\)
\(\Leftrightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}=3\)
Từ đây ta có được K = 1
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)