Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Thế vô bài toán ta được
\(A=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2012}}-\dfrac{1}{\sqrt{2013}}=1-\dfrac{1}{\sqrt{2013}}\)
Ta có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n.\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Sau đó thế vô bài toán và làm tiếp như bác ctv là ta hoàn thành bài toán!
Giả sử z là số lớn nhất trong 3 số
Từ đề bài ta có:
\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)
\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)
\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)
Ta lại có:
\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)
Dấu = xảy ra khi x = y = z
Tương tự cho trường hợp x lớn nhất với y lớn nhất.
fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit
2 = 1.2 => \(\dfrac{1}{2}\) = \(\dfrac{1}{1.2}\) = 1 - \(\dfrac{1}{2}\)
TT \(\dfrac{1}{6}=\dfrac{1}{2}-\dfrac{1}{3}\)
.................
=> VT = 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)
Đặt \(\sqrt{2012-x}+2012=y\)
=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{y}{y+1}\)
=> \(\dfrac{x}{x+1}\) = \(\dfrac{y}{y+1}\)
=> x = y
<=> x = \(\sqrt{2012-x}+2012\)
<=> 2012 - x + \(\sqrt{2012-x}\) = 0
<=> \(\sqrt{2012-x}=0\)
<=> x = 2012
Ta có :\(\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}}=\frac{2013-1}{\sqrt{2013}}+\frac{2012+1}{\sqrt{2012}}\)
=>\(\frac{2013}{\sqrt{2013}}-\frac{1}{\sqrt{2013}}+\frac{2012}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}\)
=>\(\sqrt{2013}-\frac{1}{\sqrt{2013}}+\sqrt{2012}+\frac{1}{\sqrt{2012}}\)
Mà \(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}>0\)
Vậy \(\sqrt{2012}+\sqrt{2013}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}>\sqrt{2012}+\sqrt{2013}\)
Hay \(\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}}>\sqrt{2012}+\sqrt{2013}\)
\(x=\dfrac{\sqrt{\sqrt{5}-2}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+1\right)}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(x=\dfrac{1+\sqrt{5}-2}{\sqrt{3-\sqrt{5}}}-\left(\sqrt{2}-1\right)=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{6-2\sqrt{5}}}-\left(\sqrt{2}-1\right)\)
\(x=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{\left(\sqrt{5}-1\right)^2}}-\sqrt{2}+1=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\sqrt{2}+1=1\)
\(\Rightarrow x^{2012}+2x^{2013}+3x^{2014}=1^{2012}+2.1^{2013}+3.1^{2014}=6\)
Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:
\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)
Vai trò \(x,y,z\) bình đẳng
Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:
\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)
\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)
\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)
\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)
Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)
Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)
\(M=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2012}+\sqrt{2013}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2013}-\sqrt{2012}\)
\(=\sqrt{2013}-1\)
Đặt \(\sqrt{2012}=a;\sqrt{2013}=b\)
Theo đề, ta có: \(\dfrac{a^2}{b}+\dfrac{b^2}{a}-\left(a+b\right)\)
\(=\dfrac{a^3+b^3}{ab}-\dfrac{ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)-ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)^3-4ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a-b\right)^2}{ab}>0\)(đpcm)