\(\frac{y}{\left(x-y\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

1 c nha các bạn

9 tháng 8 2018

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

16 tháng 7 2019

Câu hỏi của Trần Thùy Dung - Toán lớp 8 - Học toán với OnlineMath

Vào tham khảo nha !

Không hiển thị màu xanh thì bạn nhấn vào câu hỏi tương tự ý !

16 tháng 7 2019

Lick :

https://olm.vn/hoi-dap/detail/54197989738.html

Cố mà đánh nha !

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

7 tháng 7 2016

Anh có cách khác nè :

\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{yz\left(x-y+z-x\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(x-y\right)\left(yz-xy\right)-\left(z-x\right)\left(zx-yz\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{y\left(x-y\right)\left(z-x\right)-z\left(x-y\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-\right)\left(z-x\right)}\)

\(=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{1}{xyz}\)

7 tháng 7 2016

\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-x\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{-y^2z+yz^2-z^2x+zx^2-x^2y+xy^2}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{-y^2\left(z-x\right)-zx\left(z-x\right)+y\left(z^2-x^2\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(z-x\right)\left(yz+xy-y^2-zx\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(z-y\right)\left[y\left(x-y\right)-z\left(x-y\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{1}{xyz}\)

2 tháng 1 2019

a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

         \(=\frac{2\left(y-z\right)\left(z-x\right)+2\left(x-y\right)\left(z-x\right)+2\left(x-y\right)\left(y-z\right)+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

           \(=\frac{\left[\left(x-y\right)+\left(y-z\right)+\left(z-x\right)\right]^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y+y-z+z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

Áp dụng: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

2 tháng 1 2019

b)Ta có: \(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\frac{x^2+xy+xz}{y+z}=\frac{x\left(x+y+z\right)}{y+z}\)

    Tương tự:   \(\frac{y^2}{x+z}+y=\frac{y^2+xy+zy}{x+z}=\frac{y\left(x+y+z\right)}{x+z}\)

                \(\frac{z^2}{x+y}+z=\frac{z^2+xz+zy}{x+y}=\frac{z\left(x+y+z\right)}{x+y}\)

Suy ra: \(A+\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}+\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+1\right)\)

  \(=2.\left(x+y+z\right)\)

Nên \(A=2.\left(x+y+z\right)-\left(x+y+z\right)=x+y+z\)

Mình có sai chỗ nào không nhỉ?

23 tháng 8 2016

câu nào cx ghi là lớp 8 nhưng thực ra lớp 9 cx k nổi vc

23 tháng 8 2016

lớp 8 đó anh Thắng ạ =.="

3 tháng 12 2017

bằng 0 thôi nhé

3 tháng 12 2017

bằng 0