K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

\(x^2-2x+y^2+4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x,y\)

hay \(x^2-2x+y^2+4y+6\)luôn không âm với mọi x, y ( đpcm )

29 tháng 10 2020

\(x^2-2x+y^2+4y+6\)    

\(=x^2-2x+1+y^2+4y+4+1\)   

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)    

Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{cases}}\)    

\(\left(x-1\right)^2+\left(y-2\right)^2+1\)   luôn không âm với mọi x y ( đpcm ) 

15 tháng 9 2019

\(\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\) 

\(=\left(x-1\right)^2\)  + (y-2)^2            +  1

Xét nữa là xong

  

Sửa đề: Tìm giá trị nhỏ nhất của biểu thức sau \(x^2-2x+y^2+4y\)

\(=x^2-2x+1+y^2+4y+4-5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2-5\ge-5\)

Dấu '=' xảy ra khi x=1 và y=-2

27 tháng 10 2020

x2 - 8x + 20

= x2 - 8x + 20

= ( x2 - 8x + 16 ) + 4

= ( x - 4 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

x2 + 5y2 + 2x + 6y + 34

x2 + 5y2 + 2x + 6y + 34

= ( x2 + 2x + 1 ) + ( 5y2 + 6y + 9/5 ) + 156/5

= ( x + 1 )2 + 5( y2 + 6/5y + 9/25 ) + 156/5

= ( x + 1 )2 + 5( y + 3/5 )2 + 156/5 ≥ 156/5 > 0 ∀ x, y ( đpcm )

22 tháng 10 2018

\(A=4x^2+4x+11\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Min A = 10 khi:  2x + 1 = 0

                      <=> x = -1/2

10 tháng 7 2020

jbdgvsvvsgvhvhb

28 tháng 10 2020

Ta có A = -x2 + 4x - 6 - y2 - 2y 

= -(x2 - 4x + 4) - (y2 + 2y + 1) - 1

= -(x - 2)2 - (y + 1)2 - 1 \(\le-1< 0\)

=> A < 0 với mọi x ; y

28 tháng 10 2020

A = -x2 + 4x - 6 - y2 - 2y 

= -( x2 - 4x + 4 ) - ( y2 + 2y + 1 ) - 1

= -( x - 2 )2 - ( y - 1 )2 - 1 ≤ -1 < 0 ∀ x, y

=> đpcm

22 tháng 10 2018

\(M=5x^2+2y^2+4xy-2x+4y+6\)

\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\)

Do \(\left(2x+y\right)^2\ge0\forall x;y\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y\)

\(\Rightarrow M\ge1>0\forall x;y\)

\(\left(đpcm\right)\)

8 tháng 12 2018

Ta có
\(x^2+y^2-2x-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=\)
\(\left(x-1\right)^2+\left(y-2\right)^2+1\)
\(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) >0 => đpcm