\(x^2\) + x + 1 > 0 với mọi số thực x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

\(4x^2+x+1=3x^2+x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=3x^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\in R\)

14 tháng 10 2017

a) x2 - 2xy + y2 + 1

= ( x - y)2 + 1

Do : ( x - y)2 lớn hơn hoặc bằng 0 với mọi số tực x và y

--> ( x -y)2 + 1 lớn hơn hoặc bằng 1 > 0 với mọi số thực x và y

Khi và chỉ khi : x - y =0 --> x =y

b) x - x2 - 1

= - ( x2 - x + 1)

= - [ x2 - 2.\(\dfrac{1}{2}\)x + (\(\dfrac{1}{2}\))2 - \(\dfrac{1}{4}+1\)]

= - ( x - \(\dfrac{1}{2}\))2 + \(\dfrac{1}{4}-1\)

= - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\)

Do : - ( x - \(\dfrac{1}{2}\))2 nhỏ hơn hoặc bằng 0 với mọi số thực x

--> - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\) nhỏ hơn hoặc bằng - \(\dfrac{3}{4}\)với mọi số thực x

Khi và chỉ khi : x - \(\dfrac{1}{2}\)=0 --> x = \(\dfrac{1}{2}\)

a: \(P=\dfrac{x^3-x^2+2x-2+x^2-2x+1}{x\left(x-1\right)}\)

\(=\dfrac{x^3-1}{x\left(x-1\right)}=\dfrac{x^2+x+1}{x}\)

b: x^2+x+1=(x+1/2)^2+3/4>=3/4>0

x>0

=>P>0

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

13 tháng 12 2015

ai ủng hộ 9 li-ke tròn 100 Điểm hỏi đáp , thanks trước nha

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

10 tháng 8 2018

\(B=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}>0\)

10 tháng 8 2018

Câu a : Ta có :

\(B=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}>0\)

Câu b : Ta có :

\(C=\left(2n+1\right)^2-1=\left(2n+1-1\right)\left(2n+1+1\right)=2n\left(2n+2\right)=4n^2+4n=8n\left(\dfrac{1}{2}n+\dfrac{1}{2}\right)\)

Do có thừa số là 8 nên \(8n\left(\dfrac{1}{2}n+\dfrac{1}{2}\right)\) luôn chia hết cho 8

\(\Rightarrow C=\left(2n+1\right)^2-1\) chia hết cho 8 ( đpcm )

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

16 tháng 12 2018

\(a,x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

                           \(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(b,-x^2+2x-4=-\left(x^2-2x+1+3\right)\)

                                    \(=-\left[\left(x-1\right)^2+3\right]< 0\forall x\)

12 tháng 7 2017

1) Ta có:

\(2x-x^2-3=-\left(x^2-2x+3\right)\)

= \(-\left(x^2-2x+1+2\right)\)

= \(-\left[\left(x+1\right)^2+2\right]\)

= \(-\left(x+1\right)^2-2< 0\) với mọi x ( đpcm )

a)

\(-x^2+2x-3=-\left(x^2-2x+1\right)-2\\ =-\left(x-1\right)^2-2\le-2< 0\)

vậy\(2x-x^2-3< 0\)

2 tháng 9 2018

bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương

rồi nó sẽ racau trả lời , gợi ý đó

13 tháng 7 2019

sử dụng hằng đẳng thức 1.2