Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 tam giác Vuông BIM và CKM
BM=CM
\(\widehat{BMI}=\widehat{CMK}\)(đối đỉnh)
\(\Rightarrow\) Tam giác BIM= Tam giác CKM(CH-GN)
\(\Rightarrow\)BI=CK( 2 cạnh tương ứng)
#Shinobu Cừu
Xét tam giác BIM và tam giác CKM lần lượt vuông tại T,K có:
\(\hept{\begin{cases}BM=CM\\\widehat{BMI}=\widehat{CMK}\end{cases}}\)
\(\Rightarrow\Delta BIM=\Delta CKM\)(cạnh huyền-góc nhọn)
Suy ra BI=CK(đpcm)
tôi có nik tuyensinh247
ai muốn có ko ?
2 khóa học : tiếng anh ; toán tôi bán lại chỉ có 100.000đ thui (1nik) trước đây tôi mua 2 khóa học mất 1.200.000 đ
10 khóa học :ngữ văn,sinh,toán,lý,anh,đề thi văn,anh,toán ,lý,sinh tôi bán lại chỉ có 500.000đ trươcqs đây tôi mua hơn 3.000.000đ (1nik)
ai muốn mua nhanh tay
A C D M H K
a, Xét \(\Delta CHM\) và \(\Delta BKM\) vuông lần lượt tại \(H;K\) có:
\(\widehat{CMH}=\widehat{BMK}\left(đ.đỉnh\right)\)
\(CM=BM\left(M-là-t.điểm-CB\right)\)
\(\Rightarrow\Delta CHM=\Delta BKM\left(ch-gn\right)\left(1\right)\)
\(\Rightarrow MK=MH\left(2c.t.ứ\right)\)
b, Xét \(\Delta CMK\) và \(\Delta BMH\) có:
\(AM=BM\left(M-là-t.điểm-của-CB\right)\)
\(\widehat{CMK}=\widehat{BMH}\left(đ.đỉnh\right)\)
\(HM=KM\left(cmt\right)\)
\(\Rightarrow\Delta CIK=\Delta BIH\left(c-g-c\right)\)
\(\Rightarrow\widehat{CKM}=\widehat{BHM}\left(2g.t.ứ\right)\)
Mà 2 góc đang ở vị trí so le trong nên:
\(\Rightarrow HB//KC\left(đpcm\right)\)
A B C M H K 1 2
Xét \(\Delta\)BMH và \(\Delta\)CMK có:
Góc BHM = góc CKM = 90 độ ( do BH \(⊥\)AM, CK \(⊥\)AM)
Góc M1 = góc M2 ( đối đỉnh)
BM = CM (M là trung điểm BC)
=> \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền.góc nhọn)
=> BH = CK (2 cạnh tương ứng) (dpcm)
a: Xét ΔBMI vuôngtại I và ΔCMK vuông tại K có
BM=CM
\(\widehat{BMI}=\widehat{CMK}\)
Do đó: ΔBMI=ΔCMK
Suy ra: BI=CK
b: Xét tứ giác BICK có
BI//CK
BI=CK
Do đó: BICK là hình bình hành
Suy ra: CI//BK
Xét ΔMIB vuông tại I và ΔMKC vuông tại K có
MB=MC
\(\widehat{IMB}=\widehat{KMC}\)(hai góc đối đỉnh)
Do đó: ΔMIB=ΔMKC
=>BI=CK và MI=MK
Xét ΔMIC và ΔMKB có
MI=MK
\(\widehat{IMC}=\widehat{KMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMIC=ΔMKB
=>\(\widehat{MIC}=\widehat{MKB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên CI//BK