Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bđt Bu-nhia-cop-xki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\), đẳng thức xảy ra khi \(ay=bx\)
a.
\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)=5^2\)
\(\Rightarrow-5\le2x+3y\le5\)
b.
\(\sqrt{a+c}.\sqrt{b+c}+\sqrt{a-c}.\sqrt{b-c}\le\sqrt{a+c+a-c}.\sqrt{b+c+b-c}\)
\(=\sqrt{2a}.\sqrt{2b}=2\sqrt{ab}\)
Dấu bằng xảy ra khi \(\frac{\sqrt{a+c}}{\sqrt{a-c}}=\frac{\sqrt{b+c}}{\sqrt{b-c}}\), hay \(a=b\)
Thử lại với a = b thì \(VT=2a=2\sqrt{ab}=VP>\sqrt{ab}\) nên đề đã ra sai vế phải của bđt.
c.
bđt \(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
d.
bđt \(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\le a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\)
\(\Leftrightarrow ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
bđt trên luôn đúng vì theo bđt Bu-nhia-cop-xki, ta có:
\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\sqrt{\left(ac+bd\right)^2}=\left|ac+bd\right|\ge ac+bd\)
Em thử nha, sai thì thôia) bình phương và rút gọn, ta cần chứng minh:
\(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
Tới đây có thể áp dụng bđt bunhiacopki và thu được đpcm. Nếu không thì
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng)
Đẳng thức xảy ra khi ad = bc
\( a)\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} \left( * \right)\\ \Leftrightarrow {a^2} + {b^2} + {c^2} + {d^2} + 2\sqrt {{{\left( {a + b} \right)}^2}{{\left( {c + d} \right)}^2}} \ge {a^2} + 2ac + {c^2} + {b^2} + 2bd + {d^2}\\ \Leftrightarrow \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \ge ac + bd\left( 1 \right) \)
Nếu \(ac+bd<0\) thì (1) đúng
Nếu \(ac+bd\ge0\) thì (1) \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (đúng)
Dấu "=" của bất đẳng thức (*) xảy ra:
\(\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\\left(ad-bc\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\ab-bc=0\end{matrix}\right.\)
Ta có \(\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)\(\ge\)\(\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)\(\ge\)\(a^2+b^2+c^2+d^2\)\(+2\left(ac+bd\right)\)
\(\Leftrightarrow\)\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)\(\ge\)\(ac+bd\)
\(\Leftrightarrow\)\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)\(\ge\)\(\left(ac+bd\right)^2\)(*)
Vì (*) luôn đúng theo bđt bunhia copxki \(\Rightarrow\)đpcm
dấu ''='' xảy ra khi a/c=b/d
Kết hợp Mincôpxki và C-S:
\(VT\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{a+c}\right)^2+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}=\sqrt{\frac{405}{4\left(a+b+c\right)^2}+\frac{81}{\left(a+b+c\right)^2}+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\frac{405}{12\left(a^2+b^2+c^2\right)}+2\sqrt{\frac{81\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}}=\sqrt{\frac{405}{12.3}+18}=\frac{3\sqrt{13}}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\ge2ac+2bd\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
BĐT cuối đúng theo BĐT Bunhiacopski
Dấu "=" khi \(\frac{a}{c}=\frac{b}{d}\)