Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:
Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)
=> \(2n+2\sqrt{n^2-a^2}< 4n\)
=>\(2\sqrt{n^2-a^2}< 2n\)
=>\(\sqrt{n^2-a^2}< n\)
=>n2 - a2 < n2 (bình phương cả 2 vế)
Vì |a|>0
=>a2 > 0
=> n2-a2 < n2
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
câu b làm tương tự nhé:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2\)
\(\le\left(1+1\right)\left(n+a+n-a\right)\)
\(=2\cdot2n=4n\)
\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}>\sqrt{4n}=2\sqrt{n}\)
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Hoa Trần Thị - Toán lớp 9 | Học trực tuyến
Lời giải:
Liên hợp ta thấy:
\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)
\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)
Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)
------------------------
Áp dụng vào bài toán:
\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)
\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)
Và:
\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)
\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)
Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)
a)
+) Ta có: \(\dfrac{1}{\sqrt{n}}=\dfrac{2}{2\sqrt{n}}>\dfrac{2}{\sqrt{n}+\sqrt{n+1}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\) \(=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}\)
\(=2\left(\sqrt{n+1}-\sqrt{n}\right)\) (1)
+) Ta có:
\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{2\sqrt{n}}< \dfrac{2}{\sqrt{n}+\sqrt{n-1}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\) \(=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}\)
\(=2\left(\sqrt{n}-\sqrt{n-1}\right)\) (2)
Từ (1) và (2) ⇒ đpcm
Học toán vui vẻ!
TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài
TUYÊN TRUYỀN LOẠI CON TRẦN LÊ KIM MAI RA KHỎI OLM MỚI TUẦN TRC ĐIỂM NÓ LÀ 500 THÔI, NHG TUẦN NẦY NÓ LÊN TỚI GẦN 2000, ĐÃ LÊN NHG BỊ OLM TRỪ ĐIỂM DO SỰ TUYÊN TRUYỀN CỦA E Cảm ơn OLM đã trừ điểm con súc vật TRẦN LÊ KIM MAI ,link của nó https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html Vô trangh cá nhân của e sẽ thấy đc những câu trả lời \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"siêu hay\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" của con chóhttps://olm.vn/thanhvien/kimmai123az Nó ms lớp 7 mà lamfg đc tón 9, nó tôi bt , là một người ko đàng hoàng , siêu nói tục của OLM, 1 ví dụ điển hình cho con cái nhà ko có giáo dục, nó chửi e là thèm cặc, lồn, bướm lồn, cave, các a chị vô trang cá nhân của e , vô thống kê hỏi đáp sẽ thấy nhg lời thô tục của nó. Em đăng ko để kiếm điểm nhg để vạch trần bộ mặt của con đó, e ko cần điêm làm j, nhg nếu mn thấy đúng thì k cx đc. E ko bốc phốt con chó ấy , đang chỉ ra nhg đứa dốt nát, đi copy bài
Câu 1:
\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\\ \Leftrightarrow2\sqrt{x-a}+2\sqrt{y-b}+2\sqrt{z-c}=x+y+z\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}=0\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}+3-a-b-c=0\\ \Leftrightarrow\left[\left(x-a\right)-2\sqrt{x-a}+1\right]+\left[\left(y-b\right)-2\sqrt{y-b}+1\right]+\left[\left(z-c\right)-2\sqrt{z-c}+1\right]=0\\ \Leftrightarrow\left(\sqrt{x-a}-1\right)^2+\left(\sqrt{y-b}-1\right)^2+\left(\sqrt{z-c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}-1=0\\\sqrt{y-b}-1=0\\\sqrt{z-c}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}=1\\\sqrt{y-b}=1\\\sqrt{z-c}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-a=1\\y-b=1\\z-c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a+1\\y=b+1\\z=c+1\end{matrix}\right.\)Vậy \(\left\{x;y;z\right\}=\left\{a+1;b+1;c+1\right\}\)
Câu 2:
\(\text{ a) Ta có }:\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\\ =\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(1\right)\)
\(\text{Lại có: }\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\\ =\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow2\left(\sqrt{n+1}-n\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b) Áp dụng bất đảng thức ở câu a:
\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\\ >2\left(\sqrt{101}-\sqrt{100}\right)+...+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{100}+...+\sqrt{4}-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=2\left(10-1\right)=18\left(3\right)\)
\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{99}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{1}-\sqrt{0}\right)\\ =2\left(\sqrt{100}-\sqrt{99}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}\right)\\ =2\cdot\sqrt{100}=2\cdot10=20\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow18< S< 20\)
Ta có:\(\left|a\right|>0\)
\(\Leftrightarrow a^2>0\)
\(\Leftrightarrow-a^2< 0\)
\(\Leftrightarrow n^2-a^2< n^2\)
\(\Leftrightarrow\sqrt{n^2-a^2}< \sqrt{n^2}\)(\(n\ge a\Leftrightarrow n^2\ge a^2\Leftrightarrow n^2-a^2\ge0\))
\(\Leftrightarrow\sqrt{n^2-a^2}< n\)
\(\Leftrightarrow2\sqrt{n^2-a^2}< 2n\)
\(\Leftrightarrow\left(n+a\right)+\left(n-a\right)+2\sqrt{\left(n+a\right)\left(n-a\right)}< 2n+n+a+n-a\)
\(\Leftrightarrow\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< 4n\)
\(\Leftrightarrow\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
Cách khác:
Với x,y \(\ge\)0 luôn có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (1)
Thật vậy (1) <=> \(x^2+y^2+2xy\le2\left(x^2+y^2\right)\)
<=>\(0\le x^2-2xy+y^2=\left(x-y\right)^2\) (luôn đúng)
Dấu "=" xảy ra <=> x=y\(\ge0\)
Do \(0\le\left|a\right|\le n\) => \(n-a\ge0\) ( khi cả a âm hay a dương)
Áp dụng bđt (1) có: \(\sqrt{n+a}+\sqrt{n-a}\le\sqrt{2\left(n+a+n-a\right)}\)=\(\sqrt{2.2n}=2\sqrt{n}\)
Dấu "=" xảy ra <=> \(n+a=n-a\) <=> 2a=0 <=> a=0( không thỏa mãn đk)
=> Dấu "=" không xảy ra
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
P/s : không phải lúc nào cũng có thể làm giống NK hoặc cách mình nên bạn hãy tham khảo