Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy: \(a^2;b^2;c^2\ge0\forall a;b;c\) mà \(a;b;c\ne0\) nên chỉ có \(a,b,c>0\)
Áp dụng BĐT AM-GM ta có:
\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2\cdot\frac{1}{a^2}}=2\sqrt{1}=2\)
\(b^2+\frac{1}{b^2}\ge2\sqrt{b^2\cdot\frac{1}{b^2}}=2\sqrt{1}=2\)
\(c^2+\frac{1}{c^2}\ge2\sqrt{c^2\cdot\frac{1}{c^2}}=2\sqrt{1}=2\)
Nhân theo vế 3 BĐT trên ta có:
\(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\ge2\cdot2\cdot2=8\)
Đẳng thức xảy ra khi \(a=b=c\)
Ta chứng minh
\(\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
\(\Leftrightarrow2\left(a+b\right)\left(1-ab\right)+\left(a^2+1\right)\left(b^2+1\right)\ge0\)
\(\Leftrightarrow\left(ab-a-b-1\right)^2\ge0\)(đúng)
Tương tự cho trường hợp còn lại ta có ĐPCM
Ta có:
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{1}{2}\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{2}\)
#)Giải :
Áp dụng BĐT Cauchy cho hai số không âm :
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\left(1\right)\)
Ta có: \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Leftrightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\Leftrightarrow a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)
Đặt \(A=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Hmm... Ta có BĐT phụ : \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)"=" <=> x = y
\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right);\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right);\frac{1}{c+a}\le\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow A\le\frac{1}{2}\left(\frac{ab+ac+bc}{abc}\right)\)
\(\Rightarrow A\le\frac{3ab+3ac+3bc}{6abc}\)
Ta có: \(a^2+b^2+c^2\ge ab+ac+bc\)
\(\Rightarrow A\le\frac{3ab+3ac+3bc}{6abc}\le\frac{a^2+b^2+c^2+2ab+2ac+2bc}{6abc}=\frac{\left(a+b+c\right)^2}{6abc}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Cho a,b cùng dấu. Chứng minh:
\(\left(\frac{a^2+b^2}{2}\right)^3\le\left(\frac{a^3+b^3}{2}\right)^3\)
BĐT đã cho tương đương với :
\(a^6-3a^4b^2+4a^3b^3-3a^2b^4+b^6\ge0\)
\(\Leftrightarrow a^6-a^4b^2-2a^4b^2+4a^3b^3-2a^2b^4-a^2b^4+b^6\ge0\)
\(\Leftrightarrow a^4\left(a^2-b^2\right)-2a^2b^2\left(a^2-2ab+b^2\right)-b^4\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4-b^4\right)-2a^2b^2\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+b\right)^2\left(a^2+b^2\right)-2a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^4+b^4+2ab\left(a^2+b^2\right)\right)\ge0\)
Dấu "=" xảy ra khi a,b cùng dấu
Xét hiệu : \(\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2=\frac{2\left(a^2+b^2\right)-\left(a^2+2ab+b^2\right)}{4}\)
\(=\frac{1}{4}\left(a^2-2ab+b^2\right)=\frac{1}{4}\left(a-b\right)^2\)
Do \(\left(a-b\right)^2\ge0\) nên \(\frac{1}{4}\left(a-b\right)^2\ge0\) , tức là \(\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)
Vậy \(\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\) ( đpcm )