Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)
\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)
\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)
\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)
còn sao nx thì mk chịu =.=
\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)
\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)
\(=\dfrac{2}{7}-\dfrac{-220}{567}\)
\(=\dfrac{382}{567}\)
các phần con lại dễ nên bn tự lm đi nhé mk bn lắm
Chúc bạn học tốt!
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1-\dfrac{x+2}{2002}-1-\dfrac{x+1}{2003}-1=0\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy \(x=-2004\)
\(\dfrac{5}{6}x-\dfrac{3}{4}=\dfrac{-1}{4}+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{5}{6}x=\dfrac{7}{6}\)
\(\Rightarrow x=\dfrac{7}{5}\)
b) \(-1\dfrac{1}{2}-\dfrac{2}{3}x=\dfrac{5}{6}-\left(\dfrac{-2}{5}\right)\)
\(\Leftrightarrow\dfrac{2}{3}x=-\dfrac{41}{15}\)
\(\Rightarrow x=-\dfrac{41}{10}\)
c) \(\left(\dfrac{4}{5}:x+1,5\right):\dfrac{2}{3}=-1,5\)
\(\Leftrightarrow\dfrac{8+15x}{10x}.\dfrac{3}{2}=\dfrac{-3}{2}\)
\(\Leftrightarrow\dfrac{24+45x}{20x}=\dfrac{-3}{2}\)
\(\Leftrightarrow-60x=48+90x\)
\(\Rightarrow x=-0,32\)
d) \(\dfrac{4}{3}x-\dfrac{2}{3}=\dfrac{1}{4}-x\)
\(\Leftrightarrow\dfrac{4x-2}{3}=\dfrac{1-4x}{4}\)
\(\Rightarrow16x-8=3-12x\)
\(\Rightarrow x=\dfrac{11}{28}\)
a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrowđpcm\)
d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)
\(\Rightarrowđpcm\)
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\Rightarrowđpcm\)
a)\(\dfrac{7}{8}.\left(\dfrac{2}{12}+\dfrac{4}{10}\right)=\dfrac{7}{8}.\left(\dfrac{10}{60}+\dfrac{24}{60}\right)=\dfrac{7}{8}.\dfrac{17}{30}=\dfrac{114}{240}\)
b)\(\dfrac{3}{2}-\dfrac{5}{6}\left(\dfrac{1}{2}\right)^2+\sqrt{4}=\dfrac{3}{2}-\dfrac{5}{6}.\dfrac{1}{4}+2=\dfrac{3}{2}-\dfrac{5}{24}+2=\dfrac{36}{24}-\dfrac{5}{24}+\dfrac{48}{24}=\dfrac{79}{24}\)c)\(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}-1\dfrac{15}{17}+\dfrac{2}{3}=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{7}{21}+\dfrac{2}{3}\right)-1\dfrac{15}{17}=1+\left(\dfrac{7}{21}+\dfrac{14}{21}\right)-\dfrac{32}{17}=1+1-\dfrac{32}{17}=2-\dfrac{32}{17}=\dfrac{34}{17}-\dfrac{32}{17}=\dfrac{2}{17}\)d)\(\left(-2\right)^3.\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)=-8.\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)=-8.\dfrac{2}{4}:\left(\dfrac{54}{24}-\dfrac{28}{24}\right)=-8.\dfrac{2}{4}:\dfrac{13}{12}=-4.\dfrac{12}{13}=\dfrac{-48}{13}\)e)\(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)=16\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)+28\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)=\left(16\dfrac{2}{7}+28\dfrac{2}{7}\right).\left(-\dfrac{5}{3}\right)=\left(\dfrac{120}{7}+\dfrac{196}{7}\right).\left(-\dfrac{5}{3}\right)=\dfrac{316}{7}.\left(-\dfrac{5}{3}\right)=-\dfrac{1580}{21}\)
bn ns j v bn ? mk đăng bài lên để hỏi mn chứ bn đừng cmt thế nha
a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)
b, Ta có :
\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)
c, Ta có :
\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)