Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BĐT Cauchy cho hai số : \(a^2+\dfrac{1}{4}\ge a\)
\(b^2+\dfrac{1}{4}\ge b\) Cộng hai vế bất đẳng thức trên ta được:
\(a^2+b^2+\dfrac{1}{2}\ge a+b\) mà \(a+b=1\)
\(\Rightarrow a^2+b^2\ge1-\dfrac{1}{2}=\dfrac{1}{2}\) dấu bằng xảy ra khi \(a=b=\dfrac{1}{2}\)
a,b dể tự làm nha
c)ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+2ab+b^2-2ab-2ab\ge0\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) mà a+b=1
\(\Rightarrow1\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)
lại có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\) mà \(ab\le\frac{1}{4}\)
tahy vào có \(a^2+b^2\ge2\times\frac{1}{4}\Leftrightarrow a^2+b^2\ge\frac{1}{2}\left(dpcm\right)\)
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
T = (1+a)(1+b)(1+c) = 1 + (a + b + c) + (ab + bc + ac) + abc.
Áp dụng \(A+B+C\ge3\sqrt[3]{ABC}\left(A,B,C\ge0\right)\),
ta có: \(T\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}=\left(1+\sqrt[3]{abc}\right)^3\left(đpcm\right)\)
Chúc bạn học tốt
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Ta có a và b không âm nên
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\)(bất đẳng thức cô - si)
Cần chứng minh \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\). Xét hiệu hai vế
\(\sqrt{ab}\left(a+b+\frac{1}{2}\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\sqrt{ab}\left(a+b+\frac{1}{2}-\sqrt{a}-\sqrt{b}\right)\)
\(=\sqrt{ab}\left[\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\right]\ge0\)
Xảy ra đẳng thức \(\Leftrightarrow a=b=\frac{1}{4}\)hoặc\(a=b=0\)
Ta có: \(a^4+1\ge a\left(a^2+1\right)\)\(\Leftrightarrow a^4+1\ge a^3+a\)
\(\Leftrightarrow a^4-a^3+1-a\ge0\)
\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)\ge0\)
\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a+1\right)\ge0\)
mà \(a^2+a+1=a^2+2a\frac{1}{2}+\frac{1}{4}+1-\frac{1}{4}\)\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\frac{3}{4}>0\right)\)
Vì \(\left(a+\frac{1}{2}\right)^2\ge0\)với mọi a ( Đó là điều hiển nhiên )
Vậy...................
Bài làm chỉ mang tính chất tượng trưng còn sai sót