Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right).\left(c^2+d^2\right)\)
<=>\(a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
<=>\(2abcd\le a^2d^2+b^2c^2\)
<=>\(0\le a^2d^2+b^2c^2-2abcd\)
<=>\(0\le\left(ad-bc\right)^2\)(thoả mãn)
Dấu "=" xảy ra khi: \(ad-bc=0=>ad=bc=>\frac{a}{b}=\frac{c}{d}\)
=>ĐPCM
\(\left\{{}\begin{matrix}\sqrt{x}=1.\sqrt{x}\\\sqrt{2-x}=1.\sqrt{2-x}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a=1\\b=1\\x=\sqrt{x}\\y=\sqrt{y}\end{matrix}\right.\)
áp vào \(\left(1.\sqrt{x}+1.\sqrt{2-x}\right)^2\le\left(1^2+1^2\right)\left(\sqrt{x}^2+\sqrt{2-x}^2\right)=2.\left(x+2-x\right)=2.2=4\)\(\left(1.\sqrt{x}+1.\sqrt{2-x}\right)^2\le4\Rightarrow\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\le2\)
tại đâu bạn tự tìm cho vui
oh, bunhia copxki kìa :V lâu lắm mới thấy đăng toán lớp 9
a) \(\Leftrightarrow a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2d^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)(luôn đúng)
b) từ câu a ta có:
\(\left(ac+bd\right)^2+\left(ac-bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Đẳng thức xảy ra \(\Leftrightarrow\left(ac-bd\right)^2=0\Leftrightarrow ac=bd\)
\(ax^3=by^3=cz^3\Rightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\)
=> \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}\)
\(=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}=\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}=\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}.\)
Vay \(\sqrt[3]{ax^2+by^2+cz^2}=\)\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}.\)
\(\left(a^2+b^2+c^2\right).\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(=>a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(-\left(a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\right)=0\)
\(=>a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz=0\)
\(=>a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(=>\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(=>\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Tổng của 3 số không âm=0 <=> chúng=0
\(=>\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}}=>\hept{\begin{cases}ay=bx=>\frac{a}{x}=\frac{b}{y}\\az=cx=>\frac{a}{x}=\frac{c}{z}\\bz=cy=>\frac{b}{y}=\frac{c}{z}\end{cases}=>\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)}\)
\((a^2 +b^2).(x^2 +y^2) \ge (ax+by)^2\)
dấu " = " xảy ra khi \(\dfrac{a}{x} = \dfrac{b}{y}\)
Vì \(\dfrac{a}{x} = \dfrac{b}{y} \Rightarrow ay=bx\)
\((a^2 +b^2).( x^2 +y^2)= a^2.x^2 +a^2.y^2 +b^2.x^2 + b^2.y^2 \)
\(= a^2.x^2 + b^2.x^2 +b^2.x^2 +b^2.y^2 \)
\(= (ax)^2 +2.b^2.x^2 + (by)^2 \)
\(= (ax)^2 +2.ax.by + (by)^2\) (tách \(b^2.x^2= b.x.b.x = a.y.b.x= ax.by\))
\(= (ax+by)^2 \)
=> đpcm
(a2+b2).(x2+y2)≥(ax+by)2(a2+b2).(x2+y2)≥(ax+by)2
dấu " = " xảy ra khi ax=byax=by
Vì ax=by⇒ay=bxax=by⇒ay=bx
(a2+b2).(x2+y2)=a2.x2+a2.y2+b2.x2+b2.y2(a2+b2).(x2+y2)=a2.x2+a2.y2+b2.x2+b2.y2
=a2.x2+b2.x2+b2.x2+b2.y2=a2.x2+b2.x2+b2.x2+b2.y2
=(ax)2+2.b2.x2+(by)2=(ax)2+2.b2.x2+(by)2
=(ax)2+2.ax.by+(by)2=(ax)2+2.ax.by+(by)2 (tách b2.x2=b.x.b.x=a.y.b.x=ax.byb2.x2=b.x.b.x=a.y.b.x=ax.by)
=(ax+by)2