Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu:
(ac + bd)2 - (a2 + b2)(c2 + d2) = a2c2 + 2acbd + b2d2 - (a2c2 + a2d2 + b2c2 + b2d2) = - a2d2 + 2abcd - b2c2
= - [(ad)2 - 2ad.bc + (bc)2] = - (ad - bc)2 \(\le\) 0 với mọi a; b; c;d
=> bất đẳng thức cần chứng minh
Dấu "=" xảy ra <=> ad = bc
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)
\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)
\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng)
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)
\(=a^2d^2+b^2c^2-2abcd\)
\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)
\(=\left(ad-bc\right)^2\ge0\)
\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
1)chứng minh cái j ???
2)\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b)Ta có:
\(\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
\(\Leftrightarrow a^2b^2+c^2d^2+2abcd\le a^2b^2+a^2d^2+b^2c^2+c^2d^2\)
\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)(Đpcm)
c)Áp dụng Bđt Bunhiacopxki ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)
\(\Rightarrow2\left(x^2+y^2\right)\ge4\)
\(\Rightarrow x^2+y^2\ge2\)\(\Rightarrow S\ge2\)
Dấu = khi \(x=y=1\)
ta có ĐPCM
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
<=> \(a^2c^2+2abcd+b^2d^2+a^2d^2+b^2c^2-2abcd=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
<=> \(a^2b^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+a^2d^2+b^2c^2+d^2b^2\) (luôn đúng )
b) ta có BĐT cần chứng minh \(\left(ax+by\right)^2< =\left(a^2+b^2\right)\left(x^2+y^2\right)\)
<=> \(a^2x^2+2axby+b^2y^2< =a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
<=> \(0< =a^2y^2-2axby+b^2x^2\)
<=> \(\left(ay-bx\right)^2>=0\) (luôn đúng )
a) Ta có (ac+bd)2+(ad−bc)2=a2c2+2acbd+b2d2+a2d2−2adbc+b2c2
=(a2c2+b2c2)+(a2d2+b2d2)=c2(a2+b2)+d2(a2+b2)=(a2+b2)(c2+d2)
b) Ta có 0≤(ad−bc)2⇔(ac+bd)2≤(ac+bd)2+(ad−bc)2
Mà theo câu a, ta có (ac+bd)2+(ad−bc)2=(a2+b2)(c2+d2)
Nên (ac+bd)2≤(a2+b2)(c2+d2)