Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)
\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)
b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)
bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)
bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)
áp dụng bất đẳng thức cô si cho 2 số dương ta có
\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)
áp dụng bất đăng thức trên ta đc
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)
\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)
Dấu "=" xảy ra khi \(x=y=z\)
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
Ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-2+4-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}+1\right)-3\left(\frac{x}{y}+\frac{y}{x}-1\right)\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}+2\right)\ge0\left(1\right)\)
Đến đây có 2 cách giải quyết
Cách 1:
\(\left(1\right)\Leftrightarrow\frac{x^2-xy+y^2}{xy}\cdot\frac{\left(x+y\right)^2}{xy}\ge0\)
\(\Leftrightarrow\frac{\left(x+y\right)^2\left(x^2-xy+y^2\right)}{x^2y^2}\ge0\)
\(\Leftrightarrow\frac{\left(x+y\right)^2\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{x^2y^2}\ge0\left(true!!!\right)\)
Cách 2 là đặt ẩn:)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t^2=\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge4\cdot\frac{x}{y}\cdot\frac{y}{x}=4\)
\(\Rightarrow\left|t\right|\ge2\)
Khi đó ta có:
\(\left(t+1\right)\left(t-2\right)\ge0\)
Nếu \(t\ge2\Rightarrow t+1>0;t-2\ge0\Rightarrow\left(t+1\right)\left(t-2\right)\ge0\)
Nếu \(t\le-2\Rightarrow t+1< 0;t-2< 0\Rightarrow\left(t+1\right)\left(t-2\right)>0\)
=> đpcm
Đề phải cho x,y,z ; a,b,c >0 chứ bạn ơi
Xét A = (a^2/x + b^2/y + c^2/z) . (x+y+z) = [(a/\(\sqrt{x}\))^2+(b/\(\sqrt{y}\))^2+(c/\(\sqrt{z}\))^2 . (\(\sqrt{x}\)2 + \(\sqrt{y}\)2 + \(\sqrt{z}\)2)
Áp dụng bđt bunhiacopxki ta có :
A >= (a/\(\sqrt{x}\).\(\sqrt{x}\)+b/\(\sqrt{y}\).\(\sqrt{y}\)+c/\(\sqrt{z}\).\(\sqrt{z}\))^2 = (a+b+c)^2
=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/x+y+z
=> ĐPCM
k mk nha
Nhầm chỗ \(\sqrt{z}\)2 nha . đó là \(\sqrt{z}\)2
k mk nha
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)\left(\frac{x}{y}+\frac{y}{x}-1\right)\ge0\)(*)
+Nếu x,y cùng dấu: \(\frac{x}{y}>0,\frac{y}{x}>0\) Áp dụng côsi: \(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\Rightarrow\frac{x}{y}+\frac{y}{x}-2\ge0;\frac{x}{y}+\frac{y}{x}-1>0\)
Suy ra (*) đúng => bất đẳng thức đã cho đúng.
+Nếu x,y khác dấu: \(\frac{x}{y}<0,\frac{y}{x}<0\)áp dụng cô si: \(\left(-\frac{x}{y}\right)+\left(-\frac{y}{x}\right)\ge2\sqrt{\left(-\frac{x}{y}\right).\left(-\frac{y}{x}\right)}=2\)
\(\Rightarrow\frac{x}{y}+\frac{y}{x}\le-2\)
\(\Rightarrow\frac{x}{y}+\frac{y}{x}-2<0;\frac{x}{y}+\frac{y}{z}-1<0\)
Suy ra (*) đúng => bất đẳng thức đã cho đúng.
Làm như bạn Mr Lazy cũng được nhưng hơi dài dòng. Sau đây mình xin trình bày cách này ngắn gọn hơn một chút
Ta đặt \(t=\frac{a}{b}+\frac{b}{a}\Rightarrow\left|t\right|=\left|\frac{a}{b}+\frac{b}{a}\right|=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\sqrt{\left|\frac{a}{b}\right|.\left|\frac{b}{a}\right|}=2\)
\(\Rightarrow t^2=\left(\frac{a}{b}+\frac{b}{a}\right)^2=\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=t^2-2\)\(\rightarrow\)Ta cần chứng minh BĐT \(t^2-2+4\ge3t\) Hay \(t^2+2\ge3t\left(1\right)\)
Thật vậy.
\(\left(1\right)\Leftrightarrow t^2-3t+2\ge0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\)
Xét TH1 \(t\ge2\)
\(\Rightarrow\begin{cases}t-2\ge0\\t-1>0\end{cases}\Rightarrow\left(t-1\right)\left(t-2\right)\ge0\Rightarrow\)BĐT luôn đúng
Xét TH2 \(t\le-2\)
\(\Rightarrow\hept{\begin{cases}t-1< 0\\t-2< 0\end{cases}\Rightarrow\left(t-1\right)\left(t-2\right)>0\Rightarrow}\)BĐT luôn đúng