Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a^2-1\right)^2\ge0\)
\(\Leftrightarrow a^4-2a^2+1\ge0\)
\(\Leftrightarrow a^4+1\ge2a^2\)
\(\Leftrightarrow1.\left(a^4+1\right)\ge2a^2\)
\(\Leftrightarrow\frac{1}{2}\ge\frac{a^2}{a^4+1}\) (đpcm)
\(\frac{a^2}{a^4+1}\le\frac{1}{2}\)
\(\Leftrightarrow a^4+1\ge2a^2\) (1)
Mà theo BĐT Cauchy có
\(a^4+1\ge2\sqrt{a^4}\)
\(\Leftrightarrow a^4+1\ge2a^2\)
Suy ra BĐT (1) luôn đúng
suy ra đề bài luôn đúng
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)
\(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)
\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)
\(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)
Câu đầu tiên áp dụng BĐT Cô si cho dưới mẫu.Câu thứ hai áp dụng BĐT Cô si cho vế trái (biểu thức trong ngoặc)?Có đc ko ạ?
1.Áp dụng BĐT Cô-si ta có:
\(a^4+1\ge2a^2\Rightarrow\frac{a^2}{a^4+1}\le\frac{a^2}{2a^2}\Rightarrow\frac{a^2}{a^4+1}\le\frac{1}{2}\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=1\)
2.Ta có:\(\left(a-b\right)^2\ge0\forall a,b\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=b\)
:))
Áp dụng bất đẳng thức có:
\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+a+b+c}=\frac{16}{2a+b+c}\)<=> \(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)
Tương tự: \(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{a+b+2c}\)
Cộng 2 vế với nhau ta được:
\(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{2a+b+c}+\frac{16}{a+2b+c}+\frac{16}{a+b+2c}\)
<=> \(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\ge16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
=> \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bạn tham khảo:
https://hoc24.vn/hoi-dap/question/862431.html
nhầm sorry bạn
b, (m+4)2>= 16m
(=) m2+8m +16 -16m >= 0
(=)m2 -8m +16 >= 0
(=) (m+4)2>= 0
Ta có (m+4)2>= 0 với mọi m
Dấu "=" xảy ra (=) (m+4)2=0
(=) m +4 = 0
(=) m= -4
Vậy (m+4)2>= 16m dấu bằng xảy ra (=) m = -4
a, Ta có:
x2+y2/16 >= 1/2 xy
(=) x2-1/2xy +y2/16 >= 0
(=) x2- 2.x.1/4 . y + (y/4)2>= 0
(=) (x-y/4)2>= 0
Ta có
(x-y/4)2>= 0 với mọi x,y
Dấu "=" xảy ra khi (=) (x-y/4)2= 0
(=) x - y/4 =0
(=) 4x = y
Vậy x2+y2/16 >= 1/2 xy Dấu "=" xảy ra khi 4x = y.
b, Ta có:
(m+4)2> 16m
(=)m2+16m + 16 - 16m > 0
(=) m2+16 > 0
Ta có
m2>= 0 với mọi m
=> m2+16 > 0 với mọi m
Vậy (m+4)2> 16m
Chúc bạn học tốt.
1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a,b>0\) (1)
Thật vậy : BĐT (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng )
Vì vậy BĐT (1) đúng.
Áp dụng vào bài toán ta có:
\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy ta có điều phải chứng minh !
Bài 1 :
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)
Cộng theo từng vế
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)
ta có \(\frac{a^2}{a^4+1}\le\frac{1}{2}\)
⇔ 2a2≤ a4+1
⇔ a4+1 ≥ 2a2
⇔ a4-2a2+1≥0
⇔(a2-1)2 ≥ 0 (luôn đúng )
vậy \(\frac{a^2}{a^4+1}\le\frac{1}{2}\); với a =1 hoặc a= -1 thì dấu bằng xảy ra