\(\frac{a^2}{a^4+1}\le\frac{1}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

ta có \(\frac{a^2}{a^4+1}\le\frac{1}{2}\)

⇔ 2a2≤ a4+1

⇔ a4+1 ≥ 2a2

⇔ a4-2a2+1≥0

⇔(a2-1)2 ≥ 0 (luôn đúng )

vậy \(\frac{a^2}{a^4+1}\le\frac{1}{2}\); với a =1 hoặc a= -1 thì dấu bằng xảy ra

27 tháng 4 2019

\(\left(a^2-1\right)^2\ge0\)

\(\Leftrightarrow a^4-2a^2+1\ge0\)

\(\Leftrightarrow a^4+1\ge2a^2\)

\(\Leftrightarrow1.\left(a^4+1\right)\ge2a^2\)

\(\Leftrightarrow\frac{1}{2}\ge\frac{a^2}{a^4+1}\) (đpcm)

27 tháng 4 2019

\(\frac{a^2}{a^4+1}\le\frac{1}{2}\)

\(\Leftrightarrow a^4+1\ge2a^2\)                                     (1)

Mà theo BĐT Cauchy có

\(a^4+1\ge2\sqrt{a^4}\)

\(\Leftrightarrow a^4+1\ge2a^2\)

Suy ra BĐT (1) luôn đúng

suy ra đề bài luôn đúng

24 tháng 4 2020

Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))

Violympic toán 8

23 tháng 4 2020

Ý em là câu b ý, câu a em chịu :v

30 tháng 1 2017

1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)

 \(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)

 \(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)

7 tháng 5 2019

Câu đầu tiên áp dụng BĐT Cô si cho dưới mẫu.Câu thứ hai áp dụng BĐT Cô si cho vế trái (biểu thức trong ngoặc)?Có đc ko ạ?

7 tháng 5 2019

1.Áp dụng BĐT Cô-si ta có:

\(a^4+1\ge2a^2\Rightarrow\frac{a^2}{a^4+1}\le\frac{a^2}{2a^2}\Rightarrow\frac{a^2}{a^4+1}\le\frac{1}{2}\left(đpcm\right)\)

Dấu '=' xảy ra khi \(a=1\)

2.Ta có:\(\left(a-b\right)^2\ge0\forall a,b\)

        \(\Leftrightarrow a^2-2ab+b^2\ge0\)

        \(\Leftrightarrow\left(a+b\right)^2\ge4ab\left(đpcm\right)\)

Dấu '=' xảy ra khi \(a=b\)

:))

22 tháng 3 2018

Áp dụng bất đẳng thức có: 

\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+a+b+c}=\frac{16}{2a+b+c}\)<=> \(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)

Tương tự: \(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{a+b+2c}\)

Cộng 2 vế với nhau ta được: 

\(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{2a+b+c}+\frac{16}{a+2b+c}+\frac{16}{a+b+2c}\)

<=> \(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\ge16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)

=> \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

NV
25 tháng 2 2020

Bạn tham khảo:

https://hoc24.vn/hoi-dap/question/862431.html

26 tháng 2 2020

E đọc câu đấy r nhưng k hiểu lắm nên ms hỏi ạ

22 tháng 5 2020

nhầm sorry bạn

b, (m+4)2>= 16m

(=) m2+8m +16 -16m >= 0

(=)m2 -8m +16 >= 0

(=) (m+4)2>= 0

Ta có (m+4)2>= 0 với mọi m

Dấu "=" xảy ra (=) (m+4)2=0

(=) m +4 = 0

(=) m= -4

Vậy (m+4)2>= 16m dấu bằng xảy ra (=) m = -4

20 tháng 5 2020

a, Ta có:

x2+y2/16 >= 1/2 xy

(=) x2-1/2xy +y2/16 >= 0

(=) x2- 2.x.1/4 . y + (y/4)2>= 0

(=) (x-y/4)2>= 0

Ta có

(x-y/4)2>= 0 với mọi x,y

Dấu "=" xảy ra khi (=) (x-y/4)2= 0

(=) x - y/4 =0

(=) 4x = y

Vậy x2+y2/16 >= 1/2 xy Dấu "=" xảy ra khi 4x = y.

b, Ta có:

(m+4)2> 16m

(=)m2+16m + 16 - 16m > 0

(=) m2+16 > 0

Ta có

m2>= 0 với mọi m

=> m2+16 > 0 với mọi m

Vậy (m+4)2> 16m

Chúc bạn học tốt.

5 tháng 2 2020

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

5 tháng 2 2020

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

26 tháng 4 2020

cảm ơn bn nha

26 tháng 4 2020

hjhj hong có gì :'3333