\(a^3+b^3\le a^4+b^4vớia+b\ge2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

\(a^3+b^3\le a^4+b^4\)

\(\Leftrightarrow\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\) ( vì \(a+b\ge2\) )

\(\Leftrightarrow a^4+ab^3+a^3b+b^4\le2a^4+2b^4\)

\(\Leftrightarrow ab^3+a^3b\le a^4+b^4\)

\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (1)

Ta thấy \(a^2+ab+b^2=\left(a^2+ab+\frac{1}{4}b^2\right)+\frac{3}{4}b^2+\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall ab\)

Nên (1) luôn đúng với mọi a;b

Vậy \(a^3+b^3\le a^4+b^4\)

8 tháng 10 2016

\(a+b\ge2\Rightarrow a+b-2\ge0\)

Ta có \(a^2\left(a-1\right)+b^2\left(b-1\right)\ge0\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)-\left(a-1\right)-\left(b-1\right)+a+b-2\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2-1\right)+\left(b-1\right)\left(b^2-1\right)+a+b-2\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(a+1\right)+\left(b-1\right)^2\left(b+1\right)+a+b-2\ge0\) luôn đúng với a,b không âm và \(a+b\ge2\)

Từ đó có điều phải chứng minh.

Cho x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

Cho x,y>0x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

.............................

3 tháng 8 2016

Đề chính xác k bạn

4 tháng 8 2016

với x,y >0 ta có :   \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)..\)

Áp dụng bất đẳng thức trên được: 

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\left(1\right).\)( vì abc = 1 ) 

Chứng minh tương tự ta được : \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\left(2\right).\)

                                                             \(\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\left(3\right).\)

Cộng vế với vế các BĐT (1), (2) và (3) ta được :

                                     \(P\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{a+1}+\frac{b}{b+1}+\frac{1}{b+1}+\frac{c}{c+1}+\frac{1}{c+1}\right)=\frac{3}{4}.\)( đpcm )

dấu " = " xẩy ra khi a = b = c = 1 

28 tháng 4 2018

áp dụng bất đẳng thức buinhia cho ba số dương

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le\left(\sqrt{a}^2+\sqrt{b^2}+\sqrt{c^2}\right)\left(1^2+1^2+1^2\right)=\left(a+b+c\right)3\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)

11 tháng 9 2016

Ta có : \(a^4+b^4\ge a^3+b^3\)

\(\Leftrightarrow a^4+b^4-a^3-b^3\ge0\)

\(\Leftrightarrow\left(a^4-a^3\right)-\left(a-1\right)+\left(b^4-b^3\right)-\left(b-1\right)+a+b-2\ge0\)

\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)+b^3\left(b-1\right)-\left(b-1\right)+a+b-2\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+a+1\right)+\left(b-1\right)^2\left(b^2+b+1\right)+a+b-2\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left[\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\right]+\left(b-1\right)^2\left[\left(b+\frac{1}{2}\right)^2+\frac{3}{4}\right]+a+b-2\ge0\)

(luôn đúng)

Vậy bất đẳng thức ban đầu được chứng minh

12 tháng 9 2017

MK viết nhầm tất cả bỏ căn nhá

2 tháng 6 2018

sai đề bài rồi trắc bạn viết nhầm

12 tháng 9 2017

BĐT Nesbitt cho 4 biến, bạn tham khảo google nhiều lắm :3

12 tháng 9 2017

Mk viết nhầm tất cả bỏ căn nhá

14 tháng 1 2017

 \(BDT\Leftrightarrow a^2+b^2+c^2+2abc+1-2\left(ab+bc+ca\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(c-1\right)^2+2c\left(a-1\right)\left(b-1\right)\ge0\)

Từ đây ta thấy trong 3 số a,b,c sẽ có 2 số hoặc cùng \(\ge1\) hoặc cùng \(\le1\).giả sử 2 số đó là a và b suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)

Vậy BĐT đầu luôn đúng

14 tháng 1 2017

Thích Dirichlet thì chơi Dirichlet

Theo nguyên lý Dirichlet thì trong ba số (a - 1); (b - 1); (c - 1) luôn tồn tại ít nhất 2 số cùng dấu.

Không mất tính tổng quát ta giả sử hai số đó là (a - 1) và (b - 1).

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow2abc\ge2\left(ac+bc-c\right)\)

Giờ ta cần chứng minh 

\(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

 \(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\)

 Dấu = xảy ra khi a = b = c = 1

6 tháng 12 2015

a)  \(\Leftrightarrow a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)  (đúng)

b) \(\Leftrightarrow\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\) (đúng)