\(a^2+b^2\ge2ab\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Dấu = xảy ra khi a=b

25 tháng 7 2019

Sửa đề: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\Leftrightarrow\left(a-b\right)^2\ge0\left(\text{đúng}\right)\)

Đẳng thức xảy ra khi a = b

20 tháng 4 2017

Ta có: \(a^2+\dfrac{1}{4}\ge a\)

Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)

Cộng 3 cái vế theo vế ta được ĐPCM

28 tháng 11 2017

a) \(\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\)

Vậy ta có đpcm. Đẳng thức xảy ra khi a=b

b) Áp dụng BĐT Cauchy:

\(x^4+3=x^4+1+1+1\ge4\sqrt[4]{x^4.1.1.1}=4x\)(đpcm)

Đẳng thức xảy ra khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2018

Lời giải:

Điều kiện: \(a>b\geq 0\)

Áp dụng BĐT Cô-si cho các số dương ta có:

\(a+\frac{4}{(a-b)(b+1)^2}=a-b+b+\frac{4}{(a-b)(b+1)^2}\)

\(=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)

\(\geq 4\sqrt[4]{(a-b).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{(a-b)(b+1)^2}}-1\)

\(=4-1=3\)

Ta có đpcm

Dấu "=" xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\Leftrightarrow a=2; b=1\)

15 tháng 12 2017

Áp dụng BĐT Cauchy dạng engel ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c(đpcm) \)

18 tháng 12 2017

theo bđt cauchy ta có

\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2a\\\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

\(\Rightarrow dpcm\)

18 tháng 8 2019

a) Giả sử:

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)

\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )

=> đpcm

b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)

Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)

Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)

c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)

\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\)

\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)

Dấu ''='' xảy ra khi \(3a=5b=12:2\)

\(\Leftrightarrow a=2;b=\frac{6}{5}\)

30 tháng 11 2017

Đề phải cho a,b,c lớn hơn 0 mới đúng

BĐT cần chứng minh tương đương

\(\left(a+b+c\right)\left(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{a^2+c^2}{a+c}\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\Sigma\dfrac{c\left(a^2+b^2\right)+\left(a+b\right)\left(a^2+b^2\right)}{a+b}\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+\Sigma\dfrac{c\left(a^2+b^2\right)}{a+b}\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\Sigma\dfrac{c\left(\left(a+b\right)^2-2ab\right)}{a+b}\le a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ac+bc+ac\right)\le a^2+b^2+c^2+2abc\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

áp dụng Bđt \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)\

\(\Rightarrow a^2+b^2+c^2+2abc\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\)

Ta cần cm

\(a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\)

BĐT trên tương đương

\(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\)

BĐT trên là hệ quả của BĐT Schur nên ta có đpcm

1 tháng 12 2017

Hồi thấy Akai xử bài này rồi :v Nhớ được mỗi cái Schur :))