Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)
\(=\dfrac{a}{a-b}\)
a) \(\dfrac{a^6+b^6}{2}\ge3a^2b^2-4\)
\(\Leftrightarrow a^6+b^6\ge6a^2b^2-8\)
\(\Leftrightarrow a^6+b^6+8\ge6a^2b^2\)
Áp dụng BĐT Cauchy, ta có:
\(a^6+b^6+8\ge3\sqrt[3]{a^6.b^6.8}=6a^2b^2\)
Vậy ta có đpcm
b) Tương tự
mình cũng vừa ra xong nhưng cũng cảm ơn bạn