\(\frac{1}{a}\)>= 2 với a >0

2, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

\(a+\frac{1}{a}=\frac{a^2+1}{a}\ge2\)

\(\Leftrightarrow a^2+1\ge2a\Leftrightarrow\left(a-1\right)^2\ge0\)(luôn đúng với mọi a)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\)

27 tháng 9 2018

\(BĐT\Leftrightarrow\frac{a}{1}+\frac{1}{a}\ge2\) .

Áp dụng BĐT cô si ta có: \(\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}\). Suy ra \(\frac{a}{1}+\frac{1}{a}\ge2\)

Hay \(a+\frac{1}{a}\ge2^{\left(đpcm\right)}\)

10 tháng 6 2019

a)\(\sqrt{x}+1>\sqrt{x+1}\) (x>0)

Có:\(\left(\sqrt{x}+1\right)^2=x+2\sqrt{x}+1\left(1\right)\) (x>0)

\(\sqrt{\left(x+1\right)^2}=x+1\) (2) (x>0)

từ (1) và (2) =>(đpcm)

b)\(\sqrt{x^2+1}>x\)

Có:\(\sqrt{\left(x^2+1\right)^2}=x^2+1\left(1\right)\)

x2=x2 (2)

Từ (1) và (2) =>(đpcm)

c)\(\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\left(a,b\ge0\right)\)

Vì a,b >or= 0

=>\(a+b\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\) (đáng lẽ 1/2+a+b> mới phải)

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

8 tháng 9 2019

a,Có \(\frac{a+8}{\sqrt{a-1}}\ge6\) (a>1) (1)

<=> \(a+8\ge6\sqrt{a-1}\)

<=> \(a^2+16a+64\ge36a-36\)

<=> \(a^2-20a+100\ge0\)

<=> \(\left(a-10\right)^2\ge0\)(luôn đúng với mọi a)

Dấu "="xảy ra <=> a=10

=> (1) đc CM

b, Áp dụng bđt cosi với hai số dương có

\(\sqrt{a^2+1}\le\frac{a^2+1+1}{2}=\frac{a^2+2}{2}\)

=> \(\frac{a^2+2}{\sqrt{a^2+1}}\ge\frac{a^2+2}{\frac{a^2+2}{2}}=\frac{2\left(a^2+2\right)}{a^2+2}=2\)

Dấu "=" xảy ra <=> a=0

NV
5 tháng 7 2020

\(\left(\frac{a-4}{a}\right)\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+1}{\sqrt{a}-2}\right)=\left(\frac{a-4}{a}\right)\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\)

\(=\left(\frac{a-4}{a}\right)\left(\frac{a-3\sqrt{a}+2-a-3\sqrt{a}-2}{a-4}\right)\)

\(=\frac{-6\sqrt{a}}{a}=\frac{-6}{\sqrt{a}}\)

4 tháng 7 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{\sqrt{AB}}=\frac{2}{2\sqrt{AB}}\ge\frac{2}{A+B}\)(đpcm)

p/s: tham khảo

       chúc bn hk tốt

\(a)\) \(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=a-b\)

\(b)\) \(B=a-b=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)\(\Rightarrow\)\(B^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)

\(B^2=4-2\sqrt{4-3}=4-2=2\)\(\Rightarrow\)\(B=\sqrt{2}\) ( vì \(B>0\) ) 

... 

19 tháng 12 2018

cảm ơn nhe <3 :))