Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C K H I
a) Xét \(\Delta ABH\) và \(\Delta KBH\) có:
\(AB=KB\left(gt\right)\)
BH là cạnh chung
\(AH=HK\) ( H là trung điểm của AK )
=> \(\Delta ABH=\Delta KBH\left(c.c.c\right)\)
Chúc bạn may mắn !

a, xét tam giác abc vuông tại a có
ab^2 + ac^2= bc^2
9^2+12^2=bc^2
144=bc^2
BC=12cm
b,có gì mái mình giải tiếp giờ đi học rồi

a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)
Mà \(I\in Oz\left(gt\right)\)
=> \(OI\) là tia phân giác của \(\widehat{xOy}.\)
Hay \(OI\) là tia phân giác của \(\widehat{AOB}.\)
Xét 2 \(\Delta\) \(OAI\) và \(OBI\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOI}=\widehat{BOI}\) (vì \(OI\) là tia phân giác của \(\widehat{AOB}\))
Cạnh OI chung
=> \(\Delta OAI=\Delta OBI\left(c-g-c\right).\)
b) Ta có \(\widehat{AOI}=\widehat{BOI}\) (vì \(OI\) là tia phân giác của \(\widehat{AOB}\))
=> \(\widehat{AOH}=\widehat{BOH}.\)
Xét 2 \(\Delta\) \(OAH\) và \(OBH\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOH}=\widehat{BOH}\left(cmt\right)\)
Cạnh OH chung
=> \(\Delta OAH=\Delta OBH\left(c-g-c\right)\)
=> \(AH=BH\) (2 cạnh tương ứng).
=> H là trung điểm của \(AB.\)
Theo câu a) ta có \(\Delta OAI=\Delta OBI.\)
=> \(\widehat{AIO}=\widehat{BIO}\) (2 góc tương ứng).
Lại có: \(\widehat{AIO}+\widehat{BIO}=180^0\) (vì 2 góc kề bù).
Mà \(\widehat{AIO}=\widehat{BIO}\left(cmt\right)\)
=> \(2.\widehat{AIO}=180^0\)
=> \(\widehat{AIO}=180^0:2\)
=> \(\widehat{AIO}=90^0.\)
=> \(\widehat{AIO}=\widehat{BIO}=90^0\)
=> \(OI\perp AB.\)
Xét \(\Delta OAB\) có:
\(OA=OB\left(gt\right)\)
=> \(\Delta OAB\) cân tại O.
Có \(OI\) là đường cao (vì \(OI\perp AB\)).
=> \(OI\) đồng thời là đường trung trực của \(\Delta OAB.\)
=> \(OI\) là đường trung trực của đoạn thẳng \(AB\left(đpcm\right).\)
Chúc bạn học tốt!
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
mà DE<DC(ΔDEC vuông tại E)
nên DA<DC
c: Gọi M là giao điểm của CF và BA
Xét ΔCMB có
CA,BF là các đường cao
CA cắt BF tại D
Do đó: D là trực tâm của ΔCMB
=>MD\(\perp\)BC
mà DE\(\perp\)BC
và MD,DE có điểm chung là D
nên M,D,E thẳng hàng
=>CF,DE,BA đồng quy tại M