Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
bài 1:a,
\(3^9.3:3^{10}+\left|2010^0\right|\)
=> \(3^9.3:3^{10}+\left|1\right|\)
=> \(3^9.3:3^{10}+1\)
=> \(3^{10}:3^{10}+1\)
=> 1+1
=> 2
b, \([\left(4^9:4^7\right):8-735^0]^{2011}\)
=> \([4^2:8-735^0]^{2011}\)
=> \([2^4:2^3-735^0]^{2011}\)
=> \([2-1]^{2011}\)
=> 1
c, \(8^{2x}:8=512\)
=> \(8^{2x}:8=8^3\)
=> \(8^{2x}=8^4\)
=> 2x=4
=> x=2
bài 2:
Theo đề ta có:
\(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)
=> \((7^0+7^1)+(7^2+7^3)+......+(7^{2010}+7^{2011})\)
=> \(7^0.\left(1+7\right)+7^2\left(1+7\right)+..+7^{2010}\left(1+7\right)\)
=> \(7^0.8+7^2.8+..+7^{2010}.8\)
Mà \(7^0.8+7^2.8+..+7^{2010}.8\) \(⋮\) 8 ( vì có thừa số 8 nên chia hết cho 8)
nên \(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)\(⋮\) 8
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
a, \(10^m-1⋮19,19⋮19\)
\(\Rightarrow\left(10^m-1\right)\left(10^m+1\right)+19⋮19\)
\(\Rightarrow10^{2m}-1+19⋮19\Rightarrow10^{2m}+18⋮19\)
\(b,\)Ta có : \(3+3^2+3^3+3^4+...+3^{23}+3^{24}+3^{25}\)
\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{23}+3^{24}+3^{25}\right)\)
\(=3+3\left(3+3^2+3^3\right)+...+3^{22}\left(3+3^2+3^3\right)\)
\(=3+3.39+...+3^{22}.39\)
\(=3+39\left(3+...+3^{22}\right)\)
Suy ra : B chia 39 dư 3
Vậy : B không chia hết cho 39
b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40
b, A = 3+3^2 +3^3 +3^4 +....+3^120
=(3+3^2+3^3)+......+(3^118+3^119+3^120)
=3(1+3+3^2)+....+3^118(1+3+3^2)
= 3.13+...+3^118. 13
= 13( 3+...+3^118) chia hết cho 13
c, A = 3+3^2 +3^3 + 3^4 +....+3^120
= (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)
= 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)
= 3.40+ ...+3^117 .40
= 40 .( 3+....+3^117) chia hết cho 40
Chia hết cho 13
B=(3*1+3*3+3*32)+(34*1+34*3+34*32)+...+(32008*1+32008*3+32008*32)
B=3*(1+3+32)+34*(1+3+32)+...+32008*(1+3+32)
B=3*(1+3+9)+34*(1+3+9)+...+32008*(1+3+9)
B=3*13+34*13+...+32008*13
B=(3+34+...+32008)*13 chia hết cho 13(Vì 13 chia hết cho 13)
Vậy B chia hết cho 13
Ta có:
B = 31 + 32 + 33 + 34 + ... + 32010
= ( 31 + 32 + 33 ) + 33 ( 31 + 32 + 33 ) + ... + 32007 ( 31 + 32 + 33 )
= 39 + 33 . 39 + ... + 32007 . 39
= 39 ( 1 + 33 + ... + 32007 )
→ B chia hết cho 39 mà 39 chia hết cho 13 nên B chia hếtt cho 13