Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có: }a^p-a=a.a^{p-1}-a=a\left(a^{p-1}-1\right)\)
\(\text{Vì }a\left(a^{p-1}-1\right)⋮a\)
\(\text{Vậy nên }a^p-a⋮a\)
+)Gọi d là ƯCLN(n,22n+1)
\(\Rightarrow n⋮d;22n+1⋮d\)
\(n⋮d\)
\(\Rightarrow22n⋮d\)(1)
\(22n+1⋮d\)(2)
+)Từ (1) và (2)
\(\Rightarrow22n+1-22n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=1\)
=>d=1
\(\RightarrowƯCLN\left(n,22n+1\right)=1\)
=>n và 22n+1 nguyên tố cùng nhau với mọi n nguyên dương
Chúc bn học tốt
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
a) phân tích nhân tử có cái trong ngoặc bằng (\(m^2-1\))\(\left(m+3\right)\)=(m-1)(m+1)(m+3)
có 3 số trên là 3 số chẵn liên tiếp suy ra tích trên chia hết cho 8 mà tích 3 số chẵn liên tiếp luôn chia hết cho6 nên tích trên chia hết cho 48
b)có \(5^{2n}\)đồng dư với 25 (mod của 19) mà 25 đồng dư với 6(mod của 19) suy ra \(5^{2n}\)đồng dư với \(6^n\)(mod của 19) nên cái trong ngoặc đồng dư với \(6^n\left(7+12\right)\)=\(6^n\).19 đồng dư với 0 ( mod của 19) suy ra đpcm
a, x2+5y2+2y-4xy-3=0
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)
\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)
lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)
Vậy.................
a) \(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta thấy : \(4=0+4\) là tổng hai số chính phương
Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)
Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.
Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)
\(\Leftrightarrow x=-6\)
Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.
P/s : Không chắc lắm ....
Đây là định lý nhỏ phecmat nhé bạn.
Định lý nhỏ Fermat
nhưng bn cho nik link dc ok ?
vs lại mik moiwslopws 8 nên chưa chính minh theo cách đồng dư và một số cách áp dụng định lí lớp trên