Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
moi nguoi oi hom truoc minh hoc tap hop cac so TN do thi co cua minh day nhu sau
vd: A={xeN/3<x<9}
thi minh liet ke ra la A=4,5,6,7,8 nhung sua bai lai ko dung
co sua nhu vay A=3,4,5,6,7,8
ko biet hay sai mong ae giup minh
Áp dụng BĐT Cô-si \(ab\le\frac{\left(a+b\right)}{4}^2\)
=> \(\left(2a+b\right)\left(2c+b\right)\le\frac{4\left(a+b+c\right)^2}{4}=\left(a+b+c\right)^2\)
=> \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}\ge\frac{1}{\left(a+b+c\right)^2}\)
Mấy cái kia làm tương tự cậu nhé
Dấu "=" xảy ra khi và chỉ khi a=b=c=1
Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp
Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)
\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)
\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)
Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Ta thực hiện phép đổi biến thì:
\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)
Đến đây là phần của bạn
Biểu thức b chắc ghi nhầm, 1 căn dấu trừ thì hợp lý
\(a^3=6+3a.\sqrt[3]{9-4.2}=3a+6\Rightarrow a^3-3a=6\)
\(b^3=34+3b.\sqrt{17^2-12^2.2}=3b+34\Rightarrow b^3-3b=34\)
\(\Rightarrow A=a^3-3a+b^3-3b=6+34=40\)
2/ \(\Leftrightarrow\left\{{}\begin{matrix}2y^2-x^2=1\\2x^3-y^3=1.\left(2y-x\right)\end{matrix}\right.\)
\(\Rightarrow2x^3-y^3=\left(2y^2-x^2\right)\left(2y-x\right)\)
\(\Leftrightarrow x^3+2x^2y+2xy^2-5y^3=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+3xy+5y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\Rightarrow2x^2-x^2=1\Rightarrow...\\x^2+3xy+5y^2=0\left(1\right)\end{matrix}\right.\)
Xét (1): \(\Leftrightarrow\left(x+\frac{3y}{2}\right)^2+\frac{11y^2}{4}=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) thay vào hệ ko thỏa mãn (loại)
\(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\Leftrightarrow2\left(m+n\right)=mn\)
\(\left\{{}\begin{matrix}\Delta_1=m^2-4n\\\Delta_2=n^2-4m\end{matrix}\right.\)
\(\Rightarrow P=\Delta_1+\Delta_2=m^2+m^2-4\left(m+n\right)\)
\(=m^2+n^2-2mn=\left(m-n\right)^2\ge0\)
\(\Rightarrow\) Luôn có ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm nên luôn có ít nhất 1 trong 2 pt trên có nghiệm \(\Rightarrow\) pt luôn luôn có nghiệm
\(a+b+c=6abc\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\) \(\Rightarrow xy+xz+yz=6\)
\(P=\sum\frac{\frac{1}{yz}}{\frac{1}{x^3}\left(\frac{1}{z}+\frac{2}{y}\right)}=\sum\frac{x^3}{y+2z}=\sum\frac{x^4}{xy+2xz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+xz+yz\right)}\ge\frac{\left(xy+xz+yz\right)^2}{3\left(xy+xz+yz\right)}=2\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt{2}}\)