K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

Có a2 - 1 = (a+1)(a-1) 

Xét tích (a-1)a(a+1) chia hết cho 3

Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3          (1)

Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)

Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8            (2)

Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

17 tháng 7 2017

 an+5-an+1 = an.a5-an.a = an.a(a4-1) =  an.a.(a2 - 1).(a2 + 1)= an.a.(a-1)(a+1).(a2 + 1) 

Do a.(a-1)(a+1) chia hết cho 2;3 => an.a.(a-1)(a+1).(a2 + 1) chia hết cho 6 =>  an+5-an+1 chia hết cho 6 (1)

an+5-an+1 = an(a5-a) = an(a5-1)

=> Do (a5-1) chia hết cho 5 ( định lí fermat nhỏ) => an(a5-1) chia hết cho 5 =>  an+5-an+1 chia hết cho 5

Từ (1) và (2) => an+5-an+1 là B(5;6) 

Mà BCNN(5;6) = 30 => (an+5-an+1 ) chia hết cho 30

1 tháng 9 2019

Sai đề r nếu a=2 và n=1 thì an+5-an+4=26-25=32 ko chia hết cho 30

30 tháng 12 2017

Ta có:

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số nguyên liên tiếp (n\(\in Z\))

nên \(A⋮2.3=6\) (1)Do (2,3)=1

Ta cũng có:

\(A=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)

\(\Rightarrow A⋮5\) (2)

Từ (1); (2) \(\Rightarrow A⋮6.5=30\) Do (6,5)=1

30 tháng 12 2017

\(A=n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2+1\right)\left(n^2-1\right)\)

\(=n\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)

\(=n\left(n^2+5-4\right)\left(n-1\right)\left(n+1\right)⋮6\)(tích 3 số liên tiếp)

\(=n\left(n^2-4\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=n\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)⋮5\left(đpcm\right)\)(tích 5 số liên tiếp và 1 tích có thừa số 5)

\(\Rightarrow A⋮30\)

26 tháng 6 2018

Ta có; n5-n=n(n4-1)

=n(n2-1)(n2-4+5)

=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)

=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1)

Vì n(n-1)(n+1) là tích 3 số tự nhiên liên tiếp nên n(n-1)(n+1) chia hết cho 2 và 3 (1) => 5n(n-1)(n+1) chia hết cho 30 (2)

CÓ: n(n-1)(n+1)(n-2)(n+2) là tích 5 số tự nhiên liên tiếp nên n(n-1)(n+1)(n-2)(n+2) chia hết cho 5 

Mà n(n-1)(n+1) chia hết cho 2 và 3 => n(n-1)(n+1)(n-2)(n+2) chia hết cho 30 (3)

Từ (1),(2),(3) => n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1) chia hết cho 30 hay n5-n chia hết cho 30 (đpcm)

10 tháng 11 2015

chia hết cho 3: Tích của ba số tự nhiên liên tiếp

Chia hết cho 5: Tích của 5 số tự nhiên liên tiếp