Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
A B C M N D E
Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A.
Vậy thì trung tuyến AD chính là phân giác của góc \(\widehat{MAN}\)
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Vậy thì trung tuyến AE chính là phân giác của góc \(\widehat{BAC}\)
Từ đó ta có D, E cùng thuộc tia phân giác của góc A hay A, D, E thẳng hàng.
Bạn tham khảo tại đây nhé!
https://h.vn/hoi-dap/question/142377.html
Ta xét tam giác NEA và tam giác NBC
NE = NC ( N là trung điểm EC )
góc ANE = góc BNC ( hai góc đối đỉnh )
NA = NB ( gt )
=> tam giác NAE = tam giác NBC
=> góc EAN = góc ABC ( hai góc tương ứng ) (1)
Chứng minh tương tự: tam giác MAD = tam giác MBC
=> góc DAM = góc ACB ( hai góc tương ứng ) (2)
Ta có : góc ABC + góc ACB + góc BAC = 180 ( tổng ba góc trong tam giác )
(1),(2)=> góc EAB + góc BAC + góc DAC = 180
=> Ba điểm E, D. A thẳng hàng
Tự vẽ hình:
Lấy F là trung điểm AC, K là điểm đối xứng với M qua F
Xét \(\Delta AMF\)và \(\Delta CKF\)có
FA=FC
FM=FK
,\(\widehat{AFM}=\widehat{CFK}\)
\(\Rightarrow\Delta AMF=\Delta CKF\left(c.g.c\right)\)
\(\Rightarrow CK=AM=BM\)(vì M là trung điểm AB)
Lại có:\(\widehat{FMA}=\widehat{FKC}\)
\(\Rightarrow\)AM//CK
\(\Rightarrow\widehat{KCM}=\widehat{BMC}\)
\(\Rightarrow\Delta BMC=\Delta KCM\left(c.gc\right)\)
\(\Rightarrow\widehat{CMK}=\widehat{MCB}\)
=>MK//BC
Mặt khác:MK=CB=>BC=2MF(vì F là TĐ MK)
\(\Rightarrow MK=\frac{1}{2}BC=BN+NC=CE\Rightarrow MF=CE\)
Vì MK//BC=>MF//CE=>\(\widehat{MFI}=\widehat{ICE},\widehat{FMI}=\widehat{IEC}\)
\(\Rightarrow\Delta MIF=\Delta EIC\left(g.c.g\right)\)
\(\Rightarrow IM=IE\)
Lên google cũng dc mà vừa nhanh vừa chính xác giống như tui vậy :)