Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(ab\left(a^2+b^2\right)\left(a^2\:-b^2\right)=a^5b\:\:-ab^5\)
\(=a^5b-ab+ab-ab^5\)
\(=ab\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)+5ab\left(a-1\right)\left(a+1\right)-ab\left(b-1\right)\left(b+1\right)\left(b-2\right)\left(b+2\right)-5ab\left(b-1\right)\left(b+1\right)\)
Ta thấy rằng ab(a - 1)(a + 1)(a - 2)(a + 2) và ab(b - 1)(b + 1)(b - 2)(b +2) là tích của 5 số nguyên liên tiếp nên chia hết cho 30 (1)
Ta lại có: ab(a - 1)(a + 1) và ab(b -1)(b +1) là tích 3 số nguyên liên tiếp nên chia hết cho 6.
\(\Rightarrow\) 5ab(a - 1)(a + 1) và 5ab(b -1)(b +1) chia hết cho 30 (2)
Từ (1) và (2) ta suy ra điều phải chứng minh
A = (x - 1)(x + 2)(x + 3)(x + 6)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62 \(\ge\) -36
Dấu ''='' xảy ra khi x2 + 5x = 0 <=> x(x + 5) = 0 <=> \(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy Min A = -36 khi x = 0 hoặc x = -5
a: \(A=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số nguyên liên tiếp
nên \(A=a\left(a+1\right)\left(a+2\right)⋮3!=6\)
b: \(B=\left(2a-1\right)^3-\left(2a-1\right)\)
\(=\left(2a-1\right)\left[\left(2a-1\right)^2-1\right]\)
\(=\left(2a-1\right)\left(2a-2\right)\cdot2a\)
\(=4a\left(a-1\right)\left(2a-1\right)\)
Vì a;a-1 là hai số liên tiếp nên a(a-1) chia hết cho 2
=>B chia hết cho 8
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
\(\left\{{}\begin{matrix}f\left(0\right)⋮5\Rightarrow c⋮5\\f\left(1\right)⋮5\Rightarrow\left(a+b+c\right)⋮5\\f\left(-1\right)⋮5\Rightarrow\left(a-b+c\right)⋮5\\\left[\left(a+b+c\right)+\left(a-b+c\right)\right]=2\left(a+c\right)⋮5\Rightarrow a⋮5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c⋮5\\a⋮5\\b⋮5\end{matrix}\right.\)+> dpcm
ab(a2-b2)=a3b-b3a=a3b-ab+ab-b3a=b(a3-a)+a(b-b3)=b(a3-a)-a(b3-b)
=ba(a-1)(a+1)-ab(b-1)(b+1) ta thấy a(a-1)(a+1) là 3 số nguyên liên tiếp luôn chia hết cho 6-->ab(a-1(a+1)chia hết cho 6
tương tự ab(b-1)(b+1)luôn chia hết cho 6
như vậy ab(a-1)(a+1)-ab(b-1)(b+1) luôn chia hết cho 6 với a,b thuộc Z hay ab(a2-b2) chia hết 6