Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+y\right)^3-\left(x-y\right)^3.\)
\(=x^3+3x^2y+3xy^2+y^3-\left(x^3-3x^2y+3xy^2-y^2\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3\)
\(=2y\left(y^2+3x^2\right)\)
A=(x+y)3-(x-y)3
=[(x+y)-(x-y)][(x+y)2+(x+y)(x-y)+(x-y)2]
=(x+y-x+y)[x2+2xy+y2+x2-y2+x2-2xy+y2]
=2y(3x2+y2)=B
Đpcm
Lời giải:
a)
$(a-b)^3=(a-b)^2.(a-b)=(b-a)^2.-(b-a)=-(b-a)^3$
b)
$(-a-b)^2=[-(a+b)]^2=(-1)^2(a+b)^2=(a+b)^2$
c)
$(x+y)^3=x^3+3x^2y+3xy^2+y^3$
$=x^3-6x^2y+9x^2y-6xy^2+9xy^2+y^3$
$=(x^3-6x^2y+9xy^2)+(y^3-6xy^2+9x^2y)$
$=x(x^2-6xy+9y^2)+y(y^2-6xy+9x^2)$
$=x(x-3y)^2+y(y-3x)^2$
d)
$(x+y)^3-(x-y)^3=x^3+3xy(x+y)+y^3-[x^3-3xy(x-y)-y^3]$
$=2y^3+3xy[(x+y)+(x-y)]=2y^3+6x^2y=2y(y^2+3x^2)$
Lời giải:
a)
$(a-b)^3=(a-b)^2.(a-b)=(b-a)^2.-(b-a)=-(b-a)^3$
b)
$(-a-b)^2=[-(a+b)]^2=(-1)^2(a+b)^2=(a+b)^2$
c)
$(x+y)^3=x^3+3x^2y+3xy^2+y^3$
$=x^3-6x^2y+9x^2y-6xy^2+9xy^2+y^3$
$=(x^3-6x^2y+9xy^2)+(y^3-6xy^2+9x^2y)$
$=x(x^2-6xy+9y^2)+y(y^2-6xy+9x^2)$
$=x(x-3y)^2+y(y-3x)^2$
d)
$(x+y)^3-(x-y)^3=x^3+3xy(x+y)+y^3-[x^3-3xy(x-y)-y^3]$
$=2y^3+3xy[(x+y)+(x-y)]=2y^3+6x^2y=2y(y^2+3x^2)$
nhìn zậy thoy chứ dễ lắm mik làm vd 2 bài còn lại bn làm có gì bí thì hỏi mik
a) biến đổi vế trái ta có : \(\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)( = vế phải )
b) BĐVT ta có : \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)= VP
a) VT = x3 + 3x2y + 3xy2 + y3 + x3 - 3x2y + 3xy2 - y3
= 2x3 + 6xy2
= 2x( x2 + 3y2 ) = VP
=> đpcm
b) VT = x3 + 3x2y + 3xy2 + y3 - ( x3 - 3x2y + 3xy2 - y3 )
= x3 + 3x2y + 3xy2 + y3 - x3 + 3x2y - 3xy2 + y3
= 3x2y + 2y3
= 2y( 3x2 + y2 ) = VP
=> đpcm
a)
\(VT=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\left[x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right]\)
\(=2x\left(x^2+3y^2\right)=VP\)
b)
\(VT=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)=VP\)
3A=9x2+18xy+9y2-6x-6y-300
3A=(3x+3y)2-2(3x+3y)+1-301
3A=[3(x+y)-1] -301
thay x+y vào là xong nhé!
lên gg sợt cách chứng minh bất đẳng thức buniakovsky nhé
Phương Trình Hai Ẩn, bạn ơi nếu thế mk hỏi trên đấy r, chứ k mất thời gian hỏi ở đây đâu bạn