Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)2 + 1 > 0
\(\Rightarrow\)Đpcm
b)Xét 3(a2 + b2 + c2) -(a + b +c)2 =3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2ac - 2bc
=2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
=(a - b)2 + (a - c)2 + (b - c)2\(\ge\)0 (với mọi a,b,c)
\(\Rightarrow\)Đpcm
2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
áp dụng cô-sy
\(\Rightarrow\)A\(\ge\)9
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)
Ta có:\(a\ge b\ge c\ge0\)
\(\Rightarrow a^2\ge b^2\ge c^2\ge0\)
\(\Rightarrow\hept{\begin{cases}a^2-b^2\ge0\\b^2-c^2\ge0\\c^2-a^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}c^3\left(a^2-b^2\right)\ge0\\a^3\left(b^2-c^2\right)\ge0\\b^3\left(c^2-a^2\right)\ge0\end{cases}}}\)
\(\Rightarrow c^3\left(a^2-b^2\right)+a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)\ge0\)
\(\Rightarrow a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)\ge0\)
Áp dụng BĐT Cosi 3 số dương:
\(2\left(a+b+c\right)=\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nhân theo vế của 2 BĐT \(2\left(a+b+c\left[\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right]\right)\ge9\)
\(\Rightarrow P+3\ge\frac{9}{2}\Rightarrow P\ge\frac{3}{2}\left(Dpcm\right)\)
Dấu "=" <=> a=b=c
\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))
Vậy BĐT đã được chứng minh
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a+b+c}{b+c}-1+\frac{a+b+c}{c+a}-1+\frac{a+b+c}{a+b}-1\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
Áp dụng bđt Co-si cho 3 số
\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge3\sqrt[3]{\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}}\end{cases}}\)
Nhân 2 vế vào sẽ đc dpcm
Dấu "=" khi a = b = c
Anh Incursion:Em có cách khác!Anh check giúp ạ.
Chuẩn hóa a + b + c = 3.Thì BĐT trở thành:
\(\frac{a}{3-a}+\frac{b}{3-b}+\frac{c}{3-c}\ge\frac{3}{2}\)
Ta sẽ c/m: \(\frac{a}{3-a}\ge\frac{3}{4}\left(a-1\right)+\frac{1}{2}\).
Thật vậy,xét hiệu hai vế: \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\).Do a + b + c = 3 và a,b,c > 0 hiển nhiên ta có: a< 3 tức là 3 - a > 0
Suy ra \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\ge0\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm.
Dấu "=" xảy ra khi a = b = c
Bài 1: \(a+b\ge1\). cm \(a^4+b^4\ge\dfrac{1}{8}\)
ta có : \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)(BĐT bunyakovsky)
Áp dụng BĐt bunyakovsky 1 lần nữa:
\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.\dfrac{1}{4}=\dfrac{1}{8}\)
dấu = xảy ra khi \(a=b=\dfrac{1}{2}\)
Bài 2:
Áp dụng BĐT bunyakovsky dạng đa thức và phân thức:
\(\left(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\right)\left(a+b+c\right)\ge\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2\ge\left[\dfrac{\left(a+b+c\right)^2}{a+b+c}\right]^2=\left(a+b+c\right)^2\)
do đó \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\)
dấu = xảy ra khi a=b=c
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)
Lại theo Cauchy-Schwarz lần nữa:
\(\left[\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2+b^2\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge\dfrac{1}{4}\Leftrightarrow a^4+b^4\ge\dfrac{1}{8}\)
Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)
Bài 2:
Trước tiên ta chứng minh \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)
Ta chứng minh bổ đề: \(\dfrac{a^3}{b^2}\ge\dfrac{a^2}{b}+a-b\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Viết các BĐT tương tự và cộng lại
\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+a-b+\dfrac{b^2}{c}+b-c+\dfrac{c^2}{a}+c-a=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\left(1\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(2\right)\)
Từ \((1);(2)\) ta thu được ĐPCM
Nguyen Sy Hoc: mình nghĩ đề đâu sai đâu nhỉ?
Có:
\(\frac{a}{1+b^2}=a.\left(1-\frac{b^2}{1+b^2}\right)\ge a\left(1-\frac{b^2}{2b}\right)=a-\frac{ab}{2}\)
Tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng theo vế 3 BĐT trên ta thu được:
\(VT\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c = 1
bạn có sách phát triển toán 8 tập 2 ko?
Đặt b+c =x , a+c=y, b+a=z => a+b+c =x+y+z/2 ,
=> a= (y+z-x)/2 ,b= (x+z-y)/2, c= (x+y-z)/2
VT= a/a+b + b/b+c +c/c+a
= (y+z-x)/(2x)+ (x+z-y)/(2y) + (x+y-z)/(2z)
=(y/x +z/x+ x/y+z/y+ x/z +y/z -3)/2
Áp dụng bđt cô-si (3 lần cho ba cặp nghịch đảo )
[ (y/x+x/y)+(z/x+x/z)+(y/z+z/y)-3] /2 >= 3/2
<=> VT>= 3/2
Dấu '=' có <=> x=y=z <=> a=b=c