Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nếu a + 4b chia hết cho 13 \(\Rightarrow\) 10a + 40b chia hết cho 13 (1).
Lấy (1) - 39b được 10a +b (39b = 3.13b chia hết cho 13)
\(\Rightarrow\) 10a + b chia hết cho 13 (đpcm).
đúng ha.........................................................................................

2) Nếu a + 4b chia hết cho 13 => 10a + 40b chia hết cho 13 (1).
Lấy (1) - 39b (luôn chia hết cho 13) được 10a +b
=> 10a + b chia hết cho 13.
Ngược lại cũng tương tự.

a) \(125a+25b-75c\)
\(=25\left(5a+b-3c\right)⋮25\)
\(\Rightarrow dpcm\)
b) \(39a+26b\)
\(=13\left(3a+2b\right)⋮13\)
\(\Rightarrow dpcm\)


a + 4b chia hết 13 => 10 ( a + 4b ) cũng chia hết 13
mà 10( a + 4b ) = 10a + 40b = 10a + b + 39b
xét tổng trên thấy 39b chia hết 13 => 10a + b chia hết 13 ( đpcm )
a + 4b chia hết cho 13 => 3(a + 4b) chia hết cho 13
Ta có: 3(a + 4b) + (10a + b) = 3a + 12b + 10a + b = 13a + 13b = 13(a + b) chia hết cho 13
Mà 3(a + 4b) chia hết cho 13 nên 10a + b chia hết cho 13

a) Vì mỗi số đều chia hết cho 3 => A chia hết cho 3
b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)
A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)
A= 1.39+3.39+....+312.39
=> Vì 39 chia hết cho cho 3
=> ĐPCM
a) bạn hỏi tính chất à
b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)
A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)
A= 1.39+3.39+....+312.39
=> Vì 39 chia hết cho cho 3
=> ĐPCM
Để chứng minh điều này, chúng ta sẽ sử dụng một số phép biến đổi đại số và tính chất chia hết.
Giả thiết: 10a + b chia hết cho 13 (10a + b ⋮ 13)
Cần chứng minh: a + 4b chia hết cho 13 (a + 4b ⋮ 13)
Chứng minh:
Vậy, nếu 10a + b chia hết cho 13 thì a + 4b cũng chia hết cho 13.