K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

A=4+42+43+44+...+459+460

A=(4+42)+(43+44)+...+(459+460)

A=4.(1+4)+43.(1+4)+...+459.(1+4)

A=4.5+43.5+...+459.5

A=5.(4+43+...+559) chia hết cho 5 (đpcm)

A=4+42+43+...+459+460

A=(4+42+43)+...+(458+459+460)

A=4.(1+4+42)+...+458.(1+4+42)

A=4.21+...+458.21

A=21.(4+...+458) chia hết cho 21 (đpcm)

9 tháng 10 2016

ta có   4(1+4)+43(1+4)+.....+459(1+4)

        =4.5+43.5+.....+459.5

        =5(4+43+....+459)     chia het cho 5

chia het cho 21 chứng minh tương tự nhóm 3 hạng tử đầu tiên

8 tháng 10 2016

A=41+42+43+44+...+459+460

=(41+42)+(43+44)+...+(459+460)

=41(1+4)+43(1+4)+...+459(1+4)

=41*5+43*5+...+459*5

=5(41+43+...+459) chia hết 5

A=41+42+43+44+...+459+460

=(41+42+43)+...+(458+459+460)

=41(1+4+42)+...+458(1+4+42)

=41*21+...+458*21

=21*(41+...+458) chia hết 21

 

 

9 tháng 10 2016

\(A=\left(4^1+4^2+4^3+4^4+...+4^{59}+4^{60}\right)\)

\(=4\left(1+4\right)+...+4^{59}\left(1+4\right)\)

\(=5\left(4+...+4^{59}\right)⋮5\)

\(A=4^1+4^2+4^3+4^4+..+4^{59}+4^{60}\)

\(=4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)\)

\(\Leftrightarrow21\left(4+...+4^{58}\right)⋮21\)

=>đpcm

19 tháng 9 2017

a1. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4\right)+4^2\left(1+4\right)+...+4^{58}\left(1+4\right)\)

A = \(5+4^2.5+...+4^{58}.5\)

A = \(5\left(1+4^2+...+4^{58}\right)⋮5\)

a2. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

A = \(\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\)

A = \(21.\left(1+4^3+...+4^{57}\right)⋮21\)

a3. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2+4^3\right)+4^4\left(1+4+4^2+4^3\right)+...+4^{56}\left(1+4+4^2+4^3\right)\)

A = \(\left(1+4+4^2+4^3\right)\left(1+4^4+...+4^{56}\right)\)

A = \(85.\left(1+4^4+...+4^{56}\right)⋮85\)

Câu B sao thứ tự số mũ chẳng có quy luật vậy, sao mà làm được :v

19 tháng 9 2017

mình đặt tên cho dễ

A=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮5\)

A=(1+4)+4^2(1+4)+.....+4^58(1+4)

A=5+4^2.5+....4^58.5

A=5.(1+4^2+....+4^58) => đcpm

B=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮21\)

B=(1+4+4^2)+.........+(4^57+4^58+4^59)

B= (1+4+4^2)+4^3(1+4+4^2)+.....+4^47(1+4+4^2

B=(1+4+4^2)+1+4^3+.....+4^57)

B=21.(1+4^3+.....+4^57)\(⋮21\Rightarrowđcpm\)

23 tháng 12 2019

\(A=1+4+4^2...+4^{59}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^5+4^6\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

\(=21+4^3\cdot21+....+4^{57}\cdot21\)

\(=21\left(1+4^3+4^6+...+4^{57}\right)⋮21\)

\(\Leftrightarrow A⋮21\)

Hok tốt

23 tháng 12 2019

\(A = 1 + 4 + 4^2 + ... + 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)

\(A = ( 1 + 4 + 4^2 ) + ... + ( 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)\()\)

\(A = 21 + ... + 4\)\(57\)\(. ( 1 + 4 + 4^2 )\)

\(A = 21 + ... + 4\)\(57\) \(.21\)

\(A = 21 . ( 1 + ... + 4\)\(57\)\()\)\(⋮\)\(21\)

\(Vậy : A \)\(⋮\)\(21\)

6 tháng 7 2018

❤ѕѕѕσиɢσкυѕѕѕ❤

6 tháng 7 2018

Bớt xàm đi ông

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

26 tháng 10 2019

a, 76 +75 - 74 = 74(72 + 7 - 1) = 74 . 55 = 74 . 5 . 11 

Vậy 76 +75 - 74 chia hết cho 11

b, Ta có: 106 - 57 = 26 . 56 - 57 = 56(26 - 5) = 56 . 59

Vậy....