\(\in\)N) không là số chính phương.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.

28 tháng 9 2020

Vì n là số nguyên dương nên \(n^2+n+3>3\). Gọi r là số dư khi chia n cho 3, \(r\in\left\{0,1,2\right\}\). Nếu r=0 hoặc r=2 thì \(n^2+n+3⋮3\)

Mẫu thuẫn với giả thiết \(n^2+n+3\)là số nguyên tố. Do đó r=1 hay n chia 3 dư 1. Khi đó \(7n^2+6n+2017\)chia 3 dư 2. Mà 1 số chính phương có số dư khi chia cho 3 là 0 hoặc 1 nên => đpcm

Ta có \(n\inℕ^∗\Rightarrow n\equiv0;1;2\left(mod3\right)\left(1\right)\) 

Nếu \(n\equiv0\left(mod3\right)\Rightarrow n^2+n+3\equiv0\left(mod3\right)\) mà  \(n^2+n+3>3\forall n\inℕ^∗\)

=> \(n^2+n+3\) là hợp số ( mâu thuẫn )

=> \(n\equiv0\left(mod3\right)\) (loại)  (2)

Nếu \(n\equiv2\left(mod3\right)\Rightarrow n^2+n+3\equiv9\equiv0\left(mod3\right)\) mà  \(n^2+n+3>3\forall n\inℕ^∗\)

=> \(n^2+n+3\) là hợp số ( mâu thuẫn )

=> \(n\equiv2\left(mod3\right)\)( loại)   (3)

Từ (1);(2);(3) => \(n\equiv1\left(mod3\right)\) 

Hay n chia 3 dư 1

Với \(n\equiv1\left(mod3\right)\) ta có

\(7n^2+6n+2017\equiv2030\equiv2\left(mod3\right)\) 

=> \(7n^2+6n+2017\) chia 3 dư 2

Lại có : Một số chính phương bất kì khi chia cho 3 dư 0 hoặc dư 1 (5)

Từ (4);(5) => \(7n^2+6n+2017\) không phải là số chính phương (đpcm)

10 tháng 5 2015

chua chac tan cung la cac so do da la so chinh phuong

8 tháng 1 2017

\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)

\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1

Vậy với n>1 A không thể Cp

22 tháng 2 2018

Ta có n5 +1999n +2017 = n- n+2000n + 2015 +2 ( n E Z )

Ta thấy: n5 +1999n +2017 = n- n+2000n + 2015 +2 ( n E Z ) chia cho 5 dư 2

 vì không có số chính phương nào chia 5 dư 2 

 Vậy  n5 +1999n +2017 ( n E Z ) không phải là số chính phương
 

26 tháng 10 2016

bon so lien tiep chia het cho 8

A=8k+3 

so chinh phuong le chi co dang 8k+1

A ko cp