\(a^3-a\text{ }⋮\text{ }3\text{ }\left(a\in Z\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

ta có:A= \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

vì a, a-1,a+1 là ba số nguyên liên tiếp => A chia hết cho 3

a: Vì 3 là số nguyên tố nên theo ĐỊnh lí nhỏ Fermat, ta được:

\(a^3-a⋮3\)

b: Vì 7 là số nguyên tố nên theo định lí nhỏ Fermat,ta được:

\(a^7-a⋮7\)

5 tháng 3 2018

A=a^7 -a =a(a^6 -1) =a(a^3 -1)(a^3+1) =(a-1).a.(a+1)[a^2+a+1)(a^2-a+1) ]

\(A=A_0.A_1\)

\(A_1=\left(a^2+a+1\right)\left(a^2-a+1\right)=\left[\left(a^2-4\right)+\left(a+5\right)\right]\left[\left(a^2-9\right)+\left(-a+10\right)\right]\)

\(A_1=\left[\left(a^2-4\right)\left(a^2-9\right)\right]+\left[\left(a^2-4\right)\left(-a+10\right)+\left(a+5\right)\left(a^2-a+1\right)\right]=A_2+A_3\)

\(A_3=\left(a^2-4\right)\left(-a+10\right)+\left(a+5\right)\left(a^2-a+1\right)=-a^3+10a^2+4a-40+a^3-a^2+a+5a^2-5a+5=14a^2-35\)\(A_3=7\left(2a^2-5\right)\)

\(A=A_0.A_1=A_0\left(A_2+A_3\right)=A_0.A_2+A_0.A_3\)

A3 : chia hết cho 7 hiển nhiên => \(A_0.A_3⋮7\)

\(A_0.A_2=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)\left(a^2-9\right)\)

\(A_0A_2=\left(a-3\right)\left(a-2\right)\left(a-1\right)\left(a\right)\left(a+1\right)\left(a+2\right)\left(a+3\right)\)

A0.A2 là tích 7 số nguyên liên tiếp => A0.A2 chia hết cho 7

=>\(A⋮7\) =>dpcm

6 tháng 3 2018

Ủa cái này là Fermat nhỏ mà.

4 tháng 5 2018

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do 5n(n-1)(n+1) có dạng 5k. Do đó chia hết cho 5.

Lại có: n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên tích chúng sẽ tồn tại thưa số chia hết cho 3, chia hết cho 2.

Do đó5n(n-1)(n+1) \(⋮30\)

Mặt khác: n(n-1)(n+1)(n-2(n+2) là tích 5 số tự nhiên liên tiêp, do đó tích của chúng có tồn tại 1 thừa số chi hết cho, 5, một thwuaf số chia hết cho 3, một thưa só chia hét cho 2.

Do đó n5-n chia hết cho 30

4 tháng 5 2018

\(A=n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Đặt n = 2k+1 Thay vào A có: \(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

=> \(A⋮16\)

Lại có k;k-1;k=1;k=2 là 3 số nguyên liên tiếp do đó tích chung số chia hét cho 2,3,4(3 số nguyên tố cùng nhau). Nên A chia hết 24

=> A\(A⋮384\)

Vì n lẻ nên n=2k+1

\(n^4-10n^2+9\)

\(=\left(n^2-1\right)\left(n^2-9\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\cdot\left(2k-2\right)\cdot\left(2k+4\right)\)

\(=16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì k-1;k+1;k;k+2 là bốn số liên tiếp

nên \(\left(k-1\right)\cdot k\cdot\left(k+1\right)\cdot\left(k+2\right)⋮4!=24\)

\(\Leftrightarrow16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮384\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

3 tháng 9 2016

Ta có:  (a3+a2b+ab2+b3)(a-b)=a4-b4

=> a4+a3b+a2b2+ab3-a3b-a2b2-ab3-b4=a4-b4

=> (a3b-a3b)+(a2b2-a2b2)+(ab3-ab3)+(a4-b4)= a4-b4

=> a4-b4=a4-b4

=>  ĐPCM
 

3 tháng 9 2016

Xét vế trái

\(\left(a^3+a^2b+ab^2+b^3\right)\left(a-b\right)\)

\(=a^4+a^3b+a^2b^2+ab^3-a^3b-a^2b^2-ab^3-b^4\)

\(=a^4-b^4\)

= vế phải 

=> Đpcm

5 tháng 3 2018

48 =3.16 =3.2.8

cần c/m chia hết ch 3.2.8

\(\left\{{}\begin{matrix}A=n^3+6n^2+8n\\n=2k;k\in Z\end{matrix}\right.\)

\(A=8.k^3+24k^2+16k=8k\left(k^2+3k+2\right)\)

\(A=8k\left[k^2-1+3k+3\right]=8k\left(k-1\right)\left(k+1\right)+8.3.k\left(k+1\right)\)

\(A=8k\left(k+1\right)\left(k+2\right)\)

có k(k+1)(k+2) ba số nguyên liên tiếp => chia hết cho 6

=> A chia hết cho 8.6 =48 => dpcm

13 tháng 8 2016

cho ba số tự nhiên liên tiếp, tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi ba số đã cho là số nào?

13 tháng 8 2016

chứng minh:

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) luôn chia hết cho 6 với mọi n