Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=1^2=1\)
\(\Rightarrow x^2+y^2+z^2\ge\dfrac{1}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Bài 3:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(4+1\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2=1^2=1\)
\(\Rightarrow4x^2+y^2\ge\dfrac{1}{5}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{5}\)
bài 1 mình thấy sao sao ý !!
đề bài là với mọi a,b,c tùy ý và chứng minh chứ bạn làm là khai thác ý cần chứng minh để chỉ ra điều kiện mà
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
a)
\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)
\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)
\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)
\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)
Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)
b)
Xét hiệu
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)
\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)
Dấu "=" xảy ra khi $x=y$
c)
Xét hiệu:
\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)
\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)
\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)
\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)
Dấu "=" xảy ra khi \(ad=bc\)
d)
Xét hiệu:
\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)
\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)
\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)
\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
a) \(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)
b)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Câu a :
Ta có :
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu = xảy ra khi \(a=b\)
Câu b :
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )
Dấu = xảy ra khi \(a=b=c\)
\(a^2+b^2+c^2+d^2+1\ge a+b+c+d\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+1-a-b-c-d\ge0\)
\(\Leftrightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)+\left(d^2-d+\dfrac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2+\left(d-\dfrac{1}{2}\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)
\(a^2+b^2+c^2+d^2+1\ge a+b+c+d\)
\(< =>a^2+b^2+c^2+d^2+1-a-b-c-d\ge0\)
\(< =>\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)+\left(d^2-d+\frac{1}{4}\right)\ge0\)
\(< =>\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2+\left(d-\frac{1}{2}\right)^2\ge0\left(1\right)\)
Dễ thấy \(\left(a-\frac{1}{2}\right)^2\ge0\) với mọi a
\(\left(b-\frac{1}{2}\right)^2\ge0\) với mọi b
\(\left(c-\frac{1}{2}\right)^2\ge0\) với mọi c
\(\left(d-\frac{1}{2}\right)^2\ge0\) với mọi d
=>(1) đúng với mọi a,b,c,d
=>đpcm
\(4a^2b^2+4ab+1=\left(2ab\right)^2+2.2ab.1+1^2=\left(2ab+1\right)^2\ge0\left(\forall a,b\right)\)
\(a^2+b^2>=2ab\)
\(a^2+1>=2a\)
Do đó: \(\left(a^2+b^2\right)\left(a^2+1\right)>=4a^2b\)