Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phản ví dụ: Cho n = 0 ta có: 222.0 + 5 = 1 + 5 = 6 \(⋮̸\) 7
Nếu đề là A = 222n + 5 thì thay n = 0 ta được:
A = 222.0 + 5 = 5 \(⋮̸\) 7
Vậy đề sai :v
Sử dụng đồng dư nha bn
Ta có: \(3^{2n+1}+2^{n+2}\)
\(=9^n\cdot3+2^n\cdot4\)
Mặt khác: \(9\equiv2\)(mod 7)
Suy ra: \(VT\equiv2^n\cdot3+2^n\cdot4=2^n\left(3+4\right)=7\cdot2^n\)(mod 7)
Vậy ..............
a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9
Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3
=> 9.10n + 18 \(⋮\) 9.3
=> 9.10n + 18 \(⋮\) 27.
b) 92n + 14 = 81n + 14.
Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.
=> 81n + 14 \(⋮\) 5
=> 92n + 14 \(⋮\) 5
c: \(1^3+7^3+3^3+5^3\)
\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)
\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)
Ta có: \(A=2^{2^{2n}}+5\)
\(=2^{4n}+5\)
\(=2^{\left(3+1\right)\cdot n}+5\)
\(=2^{B\cdot\left(3+1\right)}+5\)
\(=2^{3k+1}+5\)
\(=8^k\cdot2-2+7\)
\(=2\cdot\left(8^k-1^k\right)+7\)
mà \(2\cdot\left(8^k-1\right)⋮2\left(8-1\right)=2\cdot7\)
và \(7⋮7\)
nên \(2\cdot\left(8^k-1^k\right)+7⋮7\)
hay \(A⋮7\)
B là gì vậy