\(a^2>0\Leftrightarrow a\ne0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

\(a^2 > 0 ⇔ \sqrt{a^2} > 0 \)

           \(⇔ |a| > 0\)

           \(⇔ \left[\begin{array}{} a > 0 \\ - a > 0 \end{array} \right . \)

           \(⇔ \left[\begin{array}{} a > 0 \\ a < 0 \end{array} \right . \)

           \(⇔ a ≠ 0\) (Điều phải chứng minh)

26 tháng 2 2022

\(a^2>0\Leftrightarrow a^2\ne0\)(vì a2 > 0 với mọi a)

           \(\Leftrightarrow a\ne0\)(Điều phải chứng minh)

a: |x|<a

=>x^2<a^2

=>-a<x<a

b: |x|>a

=>x^2>a^2

=>x>a hoặc x<-a

24 tháng 11 2019

Bạn ơi mình nói ngắn gọn thôi 

Quy đồng hai vế với (a+1)(b+1(c+1) phá ngoặc đơn là tìm được đáp án

NV
24 tháng 11 2019

\(a+b+c+2=abc\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện