\(\ge\)ab (a+b)2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

+\(ab< 0\)thì \(VT\ge0>VP\), bđt đúng

+Xét \(ab\ge0\)

\(\left(a^2+b^2\right)^2=\left(a^2+b^2\right)\left(a^2+b^2\right)\ge2ab.\frac{\left(a+b\right)^2}{2}=ab\left(a+b\right)^2\)

17 tháng 8 2016

(a2+b2)2\(\ge\)ab(a+b)2

<=>a4+b4+2a2b2\(\ge\)a3b+2a2b2+ab3

<=>a4-a3b+b4-ab3\(\ge\)0

<=>a3.(a-b)-b3.(a-b)\(\ge\)0

<=>(a-b)(a3-b3)\(\ge\)0

<=>(a-b)2.(a2+b2+ab)\(\ge\)(luôn đúng với mọi a,b)

=>dpcm

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha

26 tháng 7 2017

sai đề

AH
Akai Haruma
Giáo viên
8 tháng 10 2017

Lời giải:

a) Ta có:

\(a^2-b^2+c^2\geq (a-b+c)^2\)

\(\Leftrightarrow a^2-b^2+c^2\geq a^2+b^2+c^2-2ab-2bc+2ac\)

\(\Leftrightarrow 2ab+2bc\geq 2b^2+2ac\)

\(\Leftrightarrow ab+bc\geq b^2+ac\Leftrightarrow b(a-b)+c(b-a)\geq 0\)

\(\Leftrightarrow (a-b)(b-c)\geq 0\)

BĐT trên luôn đúng do \(a\geq b\geq c\)

Do đó ta có đpcm.

b) \(a^2-b^2+c^2-d^2\geq (a-b+c-d)^2\)

\(\Leftrightarrow a^2-b^2+c^2-d^2\geq (a-b)^2+(c-d)^2+2(a-b)(c-d)\)

\(\Leftrightarrow a^2-b^2+c^2-d^2\geq a^2+b^2+c^2+d^2-2ab-2cd+2ac-2ad-2bc+2bd\)

\(\Leftrightarrow 2(ab+cd+ad+bc)\geq 2(b^2+d^2)+2ac+2bd\)

\(\Leftrightarrow ab+cd+ad+bc\geq b^2+d^2+ac+bd\)

\(\Leftrightarrow b(a-b)+d(c-d)+d(a-b)-c(a-b)\geq 0\)

\(\Leftrightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)

BĐT trên luôn đúng do:

\(\left\{\begin{matrix} d\geq 0\\ a\geq b\rightarrow a-b\geq 0\\ c\geq d\rightarrow c-d\geq 0\\ b\geq d\rightarrow b+d-c\geq 0\end{matrix}\right.\Rightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)

Do đó ta có đpcm.

NV
23 tháng 11 2019

\(\Leftrightarrow2a^2+2b^2+2b+5\ge2ab+4a\)

\(\Leftrightarrow a^2-2ab+b^2+b^2+2b+1+a^2-4a+4\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b+1\right)^2+\left(a-2\right)^2\ge0\) (luôn đúng)

Dấu "=" ko xảy ra nên BĐT đã cho sai, BĐT đúng chỉ là ">", ko có "\(\ge\)"

4 tháng 6 2018

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

Lại có: \(a^2+1+b^2+1+c^2+1\ge2\left(a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)=12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Dấu = xảy ra khi a=b=c=1

23 tháng 11 2016

Xét hiệu \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)=\left(a-b\right)^2.\left(a+b\right)^2.a^2b^2.\left(a^4+a^2b^2+b^4\right)\ge0\)

Đẳng thức xảy ra khi a = b

15 tháng 4 2018

vế phải bằng vế trái