Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
c) Sửa đề: \(x^2-3x+3\geq 0,75\)
Ta có:
\(x^2-3x+3=x^2-2.\frac{3}{2}x+3=x^2-2.\frac{3}{2}x+(\frac{3}{2})^2+0,75\)
\(=(x-\frac{3}{2})^2+0,75\)
Vì \((x-\frac{3}{2})^2\geq 0, \forall x\Rightarrow x^2-3x+3=(x-\frac{3}{2})^2+0,75\geq 0,75\)
Ta có đpcm
d) Không có dấu "=" bạn nhé.
\(m^2+n^2+5+2mn-4m-4n\)
\(=(m^2+2mn+n^2)-4(m+n)+5\)
\(=(m+n)^2-2.2(m+n)+5\)
\(=(m+n)^2-2.2(m+n)+2^2+1\)
\(=(m+n-2)^2+1\)
Vì \((m+n-2)^2\geq 0, \forall m,n\)
\(\Rightarrow m^2+n^2+5+2mn-4m-4n=(m+n-2)^2+1\geq 0+1>0\)
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
1)Ta co
n5-5n3+4n
=n(n4-5n2+4)
=n(n4-n2-4n2+4)
=n(n2(n2-1)-4(n2-1)
=n(n2-4)(n2-1)
=n(n-1)(n+1)(n+2)(n-2)
vi n(n-1)(n+1)(n-2)(n+2) la h 5 so tu nhien lien tiep nen chia het cho 3,5,8 ma 3.5.8=120
=>n5-5n3+4n chia het 120
Bài 2:
a: Để A là số nguyên thì \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)(do n là số nguyên)
b: Để B là số nguyên thì \(n^3-4n^2+5n-1⋮n-3\)
\(\Leftrightarrow n^3-3n^2-n^2+3n+2n-6+5⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
\(m>n>0\Rightarrow\left\{{}\begin{matrix}a>0\\b>0\\c>0\end{matrix}\right.\)
\(b^2+c^2=\left(m^2-n^2\right)^2+\left(2mn\right)^2=m^4+n^4+2m^2n^2=\left(m^2+n^2\right)^2=a^2\)
\(\Rightarrow a;b;c\) là độ dài 3 cạnh của 1 tam giác vuông theo định lý Pitago đảo
Câu a : \(x^2-3x+3=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Xem lại đề câu a .
DƯƠNG PHAN KHÁNH DƯƠNG đề đúng nhé bạn
mà bạn giúp mình câu b luôn với ạ huhu TT