\(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}>2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

b: \(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)\cdot\sqrt{ab}< =a\sqrt{a}+b\sqrt{b}\)

\(\Leftrightarrow a\sqrt{b}+b\sqrt{a}-a\sqrt{a}-b\sqrt{b}< =0\)

\(\Leftrightarrow a\left(\sqrt{b}-\sqrt{a}\right)-b\left(\sqrt{b}-\sqrt{a}\right)< =0\)

\(\Leftrightarrow\left(a-b\right)\left(\sqrt{b}-\sqrt{a}\right)< =0\)(luôn đúng)

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)

\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).

Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)

Ta có đpcm

b)

Áp dụng kết quả phần a:

\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)

\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)

\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)

.....

\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)

Do đó:

\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)

\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)

a: \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}=\sqrt{a}-\sqrt{b}\)

b: \(VT=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{2}\right)}{2-\left(\sqrt{3}-1\right)}\)

\(=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{3+\sqrt{3}}+\dfrac{\sqrt{2}\left(2-\sqrt{2}\right)}{3-\sqrt{3}}\)

\(=\dfrac{2\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)+2\left(\sqrt{2}-1\right)\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=\dfrac{2\left(\sqrt{6}-\sqrt{2}+\sqrt{3}-1+\sqrt{6}+\sqrt{2}-\sqrt{3}-1\right)}{\sqrt{3}\cdot2}\)

\(=\dfrac{2\left(2\sqrt{6}-2\right)}{2\sqrt{3}}=\dfrac{2\sqrt{6}-2}{\sqrt{3}}\)

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

1 tháng 10 2018

Ta có VT =\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)

=\(\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\) =\(\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

=\(\dfrac{a-b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

=\(\dfrac{a-b}{a-b}=1=VP\)

a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)

\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)

b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)

\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)

c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)

\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

2 tháng 10 2018

ko biet